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ABSTRACT

STABILITY OF THREE-DIMENSIONAL COMPRESSIBLE
BOUNDARY LAYERS.

Samarasingham Jeyasingham
Old Dominion University, 1999

Director: Dr. P. Balakumar

A program is developed to investigate the linear stability of three-dimensional
compressible boundary layer flows over bodies of revolutions. The problem is for-
mulated as a 2D eigenvalue problem incorporating the meanflow variations in the
normal and azimuthal directions. Normal mode solutions are sought in the whole
plane rather than in a line normal to the wall as is done in the classical 1D stability
theory. The stability characteristics of a supersonic boundary layer over a sharp
cone with 5° half-angle at 2° angle of attack is investigated. The 1D eigenvalue
computations showed that the most amplified disturbances occur around z, = 90°
and the azimuthal mode number for the most amplified disturbances range between
m = —30 to —40. The frequencies of the most amplified waves are smaller in the
middle region where the crossflow dominates the instability than the most amplified
frequencies near the windward and leeward planes. The 2D eigenvalue computations
showed that due to the variations in the azimuthal direction, the eigenmodes are
clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are
clustered in two regions. Due to the nonparallel effect in the azimuthal direction,
the eigenmodes are clustered into isolated confined regions. For some eigenvalues,
the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the
azimuthal direction, the most amplified disturbances are shifted to 120° compared
to 90° for the parallel theory. It is also observed that the nonparallel amplification

rates are smaller than that is obtained from the parallel theory.

0 The format of this thesis is based on American Institute of Aeronautics and Astronautics Journal
and was typeset in IATpX 2, by the author.
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CHAPTER 1
INTRODUCTION

The transition of viscous flows from laminar to turbulent is one of the most
challenging problems in fluid mechanics. In a typical commercial aircraft, 50 percent
of the total drag force is due to the skin friction drag (Hefner and Bushnell [35] 1979).
[n supersonic and hypersonic vehicles, the equilibrium temperature on the surface
determines the quality of material to be used in making the surfaces. Prediction of
the transition onset point, the location at which the laminar boundary laver starts
to become turbulent, is critical in the design of aerodynamic vehicles. The accurate
prediction of the transition onset point is also very important in the application of the
laminar flow control (LFC) methods to subsonic and supersonic aircrafts. Successful
prediction of transition onset point depends on understanding the transition process

and transferring the understandings onto a prediction tool.

Though there are several mechanisms and routes to go from a laminar to
a turbulent state, in quiet environments all of them, in general, follow these funda-

mental processes.
- Receptivity
- Linear instability
- Nonlinear stability and saturation
- Secondary instability

- Breakdown to turbulence.

In the receptivity process, the unsteadiness in the environment and the in-

homogeneities in the geometry generate instability waves inside the flow. In quiet
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environments , the initial amplitudes of these instability waves are small compared
to any characteristic velocity and length scales in the flow. Goldstein [36] (1983
a) theoretically explained using asymptotic methods how the Tollmien-Schlichting
waves (T-S waves) are generated near a leading edge of a flat plate by the long wave-
length acoustic disturbances and in a companion paper [37] (1985 b) described the
scattering of T-S waves from the acoustic disturbances by the streamwise variations
in surface geometries. In the second stage. the amplitudes of these instability waves
grow exponentially downstream and this process is governed by the linearized Navier-
Stokes equations. Further downstream, the amplitude of the disturbances become
large and the nonlinear effects inhibit the exponential growth and the amplitudes
of the disturbances eventually saturate or attain singular values. In the next stage,
these finite amplitude saturated disturbances become unstable to two and/or three
dimensional disturbances. This is called secondary instability and can be analyzed
using Floquet theory, Herbert (1988) [38]. Beyond this stage the spectrum broadens
due to complex interactions and further instabilities and the flow becomes turbulent
in a short distance downstream. In this thesis, we investigated the linear instability
of three dimensional supersonic boundary layers over a sharp cone at an angle of
attack.

Depending on the boundary layer profiles and flow parameters different
types of linear instability waves are generated inside the boundary layers. For sta-

bility analyses, boundary layers can be divided into following groups.

Incompressible Flows Compressible Flows

|
v Y Y Y

Two—-dimensional Three—dimensional Two—-dimensional Three—dimensional

In incompressible two-dimensional boundary layers, the disturbances may
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Fig. 1.1 Schematic of velocity components within a swept-wing boundary layer illus-
trating the definition of the cross-flow velocity (Reed & Saric).

take one of the following instability waves.
(1) inviscid instability (Rayleigh instability)
(2) viscous instability (Tollmien-Schlichting instability ).

Inviscid instability waves are generated by the interaction of inertia and
pressure forces. This instability exists when the boundary layer contains an inflection
point in the velocity distributions. The examples are boundary layer profiles in
adverse pressure gradients, wakes, jets and in separated flows. Viscous instability
waves are generated by the interaction of inertia, pressure and viscous forces. In this
type of instability, energy is transferred from mean flow to the disturbance motion
through the action of viscosity. Hence, these flows are inviscidly linearly stable but
unstable to infinitesimal disturbances at finite Reynolds numbers. This instability
is found in the plane Poiseuille flow and in boundary layer regions where pressure

gradients are small, e.g, Blasius boundary layer.



Three-dimensional boundary layers are defined as the flows where the in-
viscid streamlines are curved. In a three-dimensional boundary layer, there exists
another instability mode, called cross-flow instability. When the inviscid streamlines
are curved, there exists a pressure gradient in the direction normal to the inviscid
streamlines. Inside the boundary layer, due to the viscous effects, the velocity is
smaller than that in the inviscid region. Hence, this pressure gradient causes a veloc-
ity component inside the boundary layer that is perpendicular to the inviscid-velocity
vector. This component is called cross-flow. A schematic diagram showing differ-
ent components of the velocity inside a boundary layer is given in figure 1.1. The
cross-flow velocity profile has a maximum velocity somewhere in the middle of the
boundary layer and goes to zero on the body surface and at the boundary layer edge,
therefore exhibiting an inflection point. The description of the instability caused by
the cross-flow was first given in the classic paper by Gergory, Walker, Stuart [40]
(1956). When the cross-flow component is combined with the velocity component
in the inviscid direction, they form a mean velocity profile that has an inflection
point at which the velocity is zero. This permits a neutral disturbance with zero
frequency. This neutral disturbance appears as vortices that all rotate in the same
direction and take on the form of the familiar “cat’s eye” structure when viewed in
the stream direction. This phenomena is observed in several flow geometries such
as rotating cones ( figure 1.2 ), swept wings (figure 1.3), spheres (figure 1.4) and

rotating disks ( figure 1.5).

The stability characteristics of compressible two-dimensional and axi-symmetric

boundary layers have been thoroughly investigated (Lees and Lin (1946) [41] ,
Lees and Reshotko(1962) [42], Mack(1969) [43], Gaponov(1981) [44], Malik and

Spall(1991) [45]). The main conclusions that are drawn from these investigations

, —

can be summarized as follows. (1) The quantity (p'U)" = %(p%), where p and U

are the density and the streamwise velocity distributions of the meanflow and y the



coordinate normal to the wall, plays the same role in the compressible stability the-
ory as U" does in the incompressible theory. The location where (p'U)" = 0 is called
the “Generalized inflection point”. In most of the compressible boundary layers, the
density profile has an inflection point p" =0 and due to this compressible boundary
layers exhibit generalized inflection points. As a consequence, the flat-plate/ cone
compressible boundary layers are unstable to purely inviscid disturbances. This 1s
one of the important difference between the instability of incompressible and com-
pressible flows. (2) When the mean flow relative to the neutral disturbance phase
velocity becomes supersonic over some portion of the boundary layer, there exist sev-
eral unstable modes. For two-dimensional disturbances, it is the first of the additional
modes, called the second mode, which is the most unstable at all Mach numbers for
which the relative flow is supersonic. (3) At higher Mach numbers, the viscosity has
only a stabilizing influence on the boundary layer. (4) Considering three-dimensional
disturbances, the amplification rate of the first mode increases while the amplification
rate of the higher modes decreases with the increasing waveangles. In the inviscid
limit, the phase velocity of the first mode varies from 1 — Kl/,— to C,, where M is the
free stream Mach number and C, is the mean flow velocity at which the generalized
inflection (p'U) = 0 occurs. To have unstable first mode disturbances the general-
ized inflection point should appear above the mean velocity 1 — 37. For the second
mode, the phase velocity C varies from C, to 1. At low Mach numbers there exists
no supersonic region near the wall relative to the phase velocity Cs, hence no second
mode instability exists at low Mach numbers. The supersonic region first starts to
appear in the inviscid limit at M = 2.2 in an insulated flat plate boundary layer.
The lowest Mach number at which the unstable second mode region has been located
at finite Reynolds numbers is M = 3. The second mode instability increasés with
increasing relative supersonic region.

Linear stability of axi-symmetric three-dimensional compressible boundary



layers were investigated by Balakumar and Reed (1991) [19]. As discussed pre-
viously, at low Mach numbers, in compressible flows the most amplified waves are
oblique while in incompressible flows they are two-dimensional. This is due to the
fact that in supersonic flows, the amplification rate increases with decreasing Mach
numbers. Since in an oblique direction, the effective Mach number decreases hence
the amplification rate increases for three-dimensional waves. For a free-stream Mach
number of M = 3, the wave angle of the most amplified wave is inclined at about
55°. As described earlier, in incompressible flows the cross-flow velocity component
introduces a new instability called “cross-flow instability” and the disturbances are
inclined very close to the cross-flow direction. In compressible flows, the cross-flow
basically increases the amplification rates of the first mode and makes the most am-
plified disturbances inclined more towards the cross-flow direction. Balakumar and
Reed’s calculation showed that the amplification rate of the first mode is increased
by a factor of 2 to 4 due to the cross-flow compared with a two-dimensional flow and
this increase decreases with increasing Mach number. It was also shown that the
waveangles of the most amplified waves are increased by about 10° and the effect of
the cross-flow on the second mode is as expected small.

In general three-dimensional boundary layers, the mean boundary layer
profiles vary in all three directions: streamwise , spanwise or azimuthal and normal
directions. However, in the high Reynolds number boundary layer flows the varia-
tions in the streamwise and in the spanwise directions are smaller than that in the
normal directions. In the classical stability theory, these variations in the streamwise
and in the spanwise directions are neglected and it is assumed that the boundary
layer profiles vary only in the normal direction and uniform in the other two direc-
tions. This makes the coefficients of the linearized Navier-Stokes equations to be

independent of the streamwise and spanwise coordinates and permit one to seek a
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solution in the normal mode form
®(zq, L9, T3, ¢) = B(xg)elomrtifnTt (1.1)

where r, .z, and x3 are the coordinates in the streamwise, spanwise and in the normal
directions, t is the time. ®(x3) is the eigenfunction , «, 3 are the wavenumbers in
the streamwise and spanwise directions and w is the frequency. In general, o, 3 and

w are complex.

a=ar +ia, (1.2)
3=08+1Bi, (1.3)
w=wy + Wi (1.4)

When the normal mode form Eq. 1.1 1s substituted into the linearized Navier-Stokes
equations , a homogeneous system of ordinary differential equations with homoge- -
neous boundary conditions are obtained. The solution of which yields a dispersion

relation among a, 3 and w of the form

Fla,B,w)=0-" (1.5)

The real and imaginary parts of the relation yield two equations in terms
of the six unknown parameters (ar, ) s (8-, Bi) and (wy,wi) - To determine these
six unknowns one needs to specify four additional conditions. Two approaches are
generally used to overcome these difficulties. One is called the temporal eigenvalue
approach in which the wavenumbers a, 3 are prescribed as real numbers and the
complex frequency w 1s solved from the dispersion relation Eq. 1.5. The other method
is called spatial eigenvalue approach in which the frequency w and the spanwise
wavenumber 3 are prescribed as real numbers and the complex wavenumber o 1s

solved from the dispersion relation.



Temporal Problem

o=, real prescribed
3=05, real prescribed
w = wr + 1wy , solved from eigen relation

w, = frequency of the disturbance

w; = amplification rate of the disturbance in time
w; <0, the boundary layer is stable
=0, the boundary layer is neutrally stable
>0, the boundary layer is unstable

Spatial Problem

w=w,, real prescribed
3 =08, real prescribed
a= o +ia;, solved from eigen relation

o, = wavenumber in the streamwise direction

—a; = growth rate in the streamwise direction

—-a; <0, the boundary layer is stable
=0, the boundary layer is neutrally stable
>0, the boundary layer is unstable

In the temporal method, w; measures the amplification of the disturbances
in time and in the spatial method, -&; measures the growth rate of the disturbances in
the streamwise direction. The boundary layer is stable, neutrally stable or unstable to
small disturbances depending on whether the amplification rate w; or —a; is less than

, equal to or greater than zero respectively. Most of the linear stability computations



have been performed based on these classical approaches. In this work, this approach

is called 1D method.

The next step is to estimate the correction to the eigenvalues that is ob-
tained from the parallel theory due to the small variation of the meanflow in the
streamwise and in the spanwise directions. Three methods are available to compute
the evolution of small disturbances in a non-parallel flow. One and the oldest method
is the multiple scale approach (Saric , Nayfeh [46]). The second is the Parabolized
Stability Equations (PSE) approach (Herbert 1979 [53] )and the third method is
to solve the full Navier-Stokes equations in a non-parallel flow ( Fasel [49] . Joslin
[51]). In the linear regime, instead of solving the full Navier-Stokes equation, the
linearized Navier-Stokes equations are solved [52]|. In the multiple scale and in the

PSE methods the disturbances are written in the form
®(x1,73) = (11, 25)e’ ol MdmFibEa—wt (1.6)

Here w is the real frequency, 3 is the real spanwise wavenumber , a(z;) is the stream-
wise wavenumber which is a function of z; and ®,(z;,z3) is the amplitude function
which is a function of both z; and z3. This form of the representation is mathemat-
ically and physically meaningful in a meanflow which varies only in the streamwise
(z1) and normal (z3) direction and is uniform in the spanwise (z;) direction. These
approaches are used to compute the evolution of the disturbances in two-dimensional
Blasius type boundary layers and in quasi-three dimensional, infinite swept wing,
boundary layers ( El Hady [48], Herbert [33] and Malik {34] ).

The objective in this work is to investigate the stability and the evolu-
tion of disturbances in fully three-dimensional boundary layers. By the fully three-
dimensional boundary layers it is meant boundary layer flows over finite wings,
flow over non-axisymmetric geometries like ellipsoids, delta wings and flow over axi-

symmetric geometries at angles of attack etc. Specifically, in this thesis the stability
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of supersonic boundary layer flows over a sharp axi-symmetric cone at an angle of
attack (King 1992 [54]) is investigated. In this case, the meanflow varies in all three
directions, streamwise, azimuthal and in normal directions. Since the mean flow
varies in the azimuthal direction, it is not possible to decompose the disturbances
as a sum of Fourier components as is done in the axi-symmetric or in the infinite
swept wing flows. The expectation is that since the instability is directly related to
the local mean flow conditions, the eigenfunctions will be confined to a region in the

azimuthal direction. Hence, the normal mode is written in the form
@(.’I‘q, o, 133) = (I)O(Il. o, ‘rg)eifa(zl)d.rl—iwt. (17)

The azimuthal variation is included in the amplitude part ®(zy,z3,x3)
which now becomes a strong function of z, and r3 and a slowly varying function
of z;. If the z; dependence of ®, and o are dropped, one can obtain an eigenvalue
problem for a or w and ®,(x4,x3) which is a function of z; and z3coordinates. This

is called as 2D eigenvalue problem.

Several experiments were performed to understand the stability and transi-
tion of supersonic and hypersonic two dimensional and three dimensional boundary
layers. The experiments can be divided into two groups. One is transition experi-
ments in which the transition onset is measured at different flow conditions (Potter
1974 [18], Krogmann 1977 [55], Stetson 1981 (9], King 1992 [54]). In these exper-
iments, the unit Reynolds number effects and the effects of the angles of attack on
the transition front are investigated.

Since there is no length scale in flows over sharp cones, the transition
Reynolds number should not change with the free stream unit Reynolds numbers.
However, experiments performed in different wind tunnels at different Reynolds num-
bers change with the free stream unit Reynolds number. Though transition is influ-

enced by several factors, bluntness, angle of attack, vibration of the model, roughness,
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free stream disturbance levels, spectral content of the free stream disturbance, the
unit Reynolds number effects are generally attributed to the radiated acoustic field
from the boundary layers on the tunnel walls. Main conclusion is that in quiet tun-
nels at low unit Reynolds numbers the boundary layers on the wall remain laminar
and the effect of unit Reynolds number on the transition Reynolds number is mini-
mal. In noisy wind tunnels the boundary layers on the walls become turbulent and
the transition Reynolds numbers decrease with the unit Reynolds numbers.

The experiments performed over sharp and blunt cones at small angles of
attack show that the transition front moves downstream on the windward ray and
moves downstream on the leeward ray.

The second type of experiments are the stability experiments where the
stability characteristics of the boundary layers are investigated. Stetson and his co-
workers systematically investigated the stability characteristics of hypersonic bound-
ary layers in natural conditions (Stetson et.al., 1983 [10], 1984 [11], 1985 [12], 1936
(13], 1989 [14]). Their results are summarized in a review paper by Stetson and
Kimmel(1992) [15]. Experiments were performed on sharp and blunt cones with 7°
half angle at a free stream Mach number of 8 at zero and nonzero angles of attack
and with adiabatic and cooled surface conditions.

The experiments agree with the theoretical predictions that the transition
in hypersonic boundary layers is dominated by the high frequency second mode type
disturbances. However, the measured growth rates are much smaller than that is
computed from the linear stability theory. It is also observed that the small nose
bluntness increases the critical Reynolds number from that for a sharp cone. Flow
over a sharp cone at an angle of attack showed that the boundary layer along the
windward direction becomes more stable and on the leeward side it becomes more
unstable compared to that is obtained at zero angle of attack. Hence transition on

the leeward side moves downstream and in the leeward side moves upstream from



that for a sharp cone. The frequencies of the most amplified disturbances on the
windward side are larger than that is obtained for a sharp cone at angle of attack.
This is attributed to the finding that the frequency of the most amplified waves in
hypersonic boundary layers depends inversely on the boundary layer thickness which
1s smaller than that is obtained at zero angle of attack, hence the frequency of the
most amplified waves are higher. Unit Reynolds number effects are investigated by
measuring the spectral content of the free-stream disturbances and the range of the
most amplified frequencies for the the boundary layer. [t is observed that most of the
energy in the freestream disturbances are contained in the low frequency disturbances
and the spectrum for the high frequency disturbances are very small. But it was
concluded that the high frequency disturbances with very small amplitudes are are
sufficient to initiate the second mode disturbances. It was also observed that if the
frequency of the most amplified wave for the boundary layer is much higher than
the frequency limit in the free-stream disturbance spectrum, then the most amplified
wave will not be initiated and the transition is dominated by the smaller frequency
waves which are excited by the free-stream disturbances. Instantaneous structure and
the ensemble-averaged structure of the second mode instability waves in a hypersonic
boundary layer was measured by Kimmel et. al. (1997) [22], Poggie(1997) [7]
in natural conditions. It is observed that the second mode disturbances travel as
wavepackets confined to a small region in the circumferential direction. Recently
Poggie et. al. (1998) (6] investigated the stability and transition of a hypersonic
three-dimensional boundary layer over an elliptic cone. Transition front appears
asymmetric with early transition close to the minor axis and delayed transition close
to the major axis which is similar to that is observed in the flow over a sharp cone
at an angle of attack.

King (1992) [54] investigated the transition of a three-dimensional bound-

ary layer in NASA Langley's Mach 3.5 quiet tunnel. The experiments were performed
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for a 5° half angle sharp cone at various angles of attack. The transition is dominated
by crossflow dominated instability and the transition onset point moves downstream
near the windward side and moves upstream near the leeward side. This case is cho-
sen to investigate the stability characteristics of a three-dimensional boundary layer

using the 2D eigenvalue method.
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a) Rotational speed below critical- no instability apparent

b) Rotational speed slightly above critical - spiral streaks are observed

c¢) Rotational speed far above critical- spiral streaks are observed, then

secondary instability superposed on the vortices, then transition

Fig. 1.2 Flow visualization for a spinning cone (Kobayashi et al. 1983)



Fig. 1.3 Naphthalene surface patterns illustrating cross-flow vortices (Saric & Yeates
1985). Flow is from left to right.

Fig. 1.4 Flow visualization for a rotating sphere: spiral streaks are observed , then
the secondary instability superposed on the vortices, then transition (Kohama &

Kobayashi 1983b).
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CHAPTER 2
FORMULATION

This chapter describes the formulation of the linear stability theory of three-
dimensional compressible boundary layer and the numerical procedure that is used
to solve these equations for a model case - supersonic flow over a sharp cone at an
angle of attack. The first section deals with the derivation of the linear Parabolized
Stability Equations in its most generic form i.e, in generalized curvilinear coordinate
system. In the second section, the classical one-dimensional stability equations and
the two-dimensional stability equatio"ns are derived from the general theory as special
cases.

As described in the introduction, the stability problem is formulated in two
different methods. The first methodology is to make a locally parallel flow assump-
tion i.e, neglect the meanflow variations in the streamwise and azimuthal directions |
and formulate the problem as a 1D eigenvalue problem. In other words, the solutions
to the stability equations are sought in a line normal to the cone surface. In fact,
large portion of the literature on stability computations of three-dimensional and two
dimensional boundary layers are performed as 1D eigenvalue problems. But the par-
allel flow assumption will not hold true for flows which are highly three-dimensional
and the stability computations and transition prediction will not be correct. Hence
in an attempt to construct a near approximate solution to the full Navier-Stokes
equation, the variation of the meanflow in the azimuthal direction is incorporated
‘0 the second method and formulated as a 2D eigenvalue problem. Thereby normal
mode solution is sought in a plane at a streamwise location, rather than in a line as
i1 the former method. In both cases, 1D and 2D eigenvalue approaches, the problem

can be formulated as temporal or a spatial stability methods. In the temporal stabil-
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ity the wave number in streamwise direction « is known and the desired eigenvalue

is the temporal frequency w, whereas in spatial stability w is fixed and « is sought.

There are two classes of numerical methods that can be used for the com-
putations of the temporal or spatial eigenvalues from the eigenvalue problems: global
and local methods. In the global method a generalized eigenvalue problem is set up
and the eigenvalues are obtained using some standard algorithms such as QZ avail-
able in the public-domain software library LAPACK. Here, a guess for the eigenvalues
is not required. On the other hand, in the local method a guess for the eigenvalue
is required and only the eigenvalue that happens to be in the neighborhood of the
guessed value is computed using some iterative techniques. These methods will be

discussed in detail in the last section of this chapter.

2.1 Formulation of the Stability Theory

The growth or decay of infinitesimal perturbations superimposed on a laminar flow
is the focus of linear stability theory. The linear stability theory analyzes the char-
acteristics of the instabilities of the mean laminar flow over the surface of interest.
Transition prediction is basically composed of two tasks; (1) accurate calculation of
the viscous flow field over the the body, (2) calculation of the amplification rate. The

stability properties of two-dimensional incompressible and compressible boundary-

~ layers and three-dimensional incompressible and compressible boundary-layers were

discussed in the first chapter. In this section, the derivation of the linear stability
equation, starting from the compressible three-dimensional Navier-Stokes equations
in orthogonal curvilinear coordinate system is presented. Normal mode method is
chosen in the formulation. Since the final expression for the linear stability equa-
tions in the generalized curvilinear coordinate system contain numerous terms only

linearized continuity equation will be given.
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Fig. 2.1 Orthogonal curvilinear coordinate system

2.1.1 Governing Equations

The derivation of the stability equations starts from the Navier-Stokes equations for
three-dimensional compressible flow for an ideal viscous gas in orthogonal curvilinear
coordinate system . The governing equations are the continuity equation, the mo-
mentum equations in the streamwise, azimuthal and normal directions and energy
equation. In addition, perfect gas equation of state is used to ‘close’ the system
of fluild dynamic equations. A body-oriented coordinate system is used as shown
in figure 2.1, with z; taken along the streamwise direction, z, along the azimuthal
direction and z3 normal to the surface. The Navier-Stokes equations in the vector
form are:

Continuity equation

adp
L 4+VpV=0- 2.1
ot P 0 (2.1)



Momentum equations

ov o _
P E—}-V-VV = pf + V. II; o,y =123 " (2.2)

Energy equation

pCy (%? +V. VT) =V - (kVT)+ O - (2.3)

Equation of state

p=pRT - (2.4)

The first term on the right hand side of the momentum equations, Eq. 2.2,
is the body force per unit volume. II;; represents the component of the stress tensor.
which consists of normal stresses and shearing stresses. @ in the energy equation,
Eq. 2.8, is the dissipation function.

The expanded form of these expressions as given by Anderson et.al. (32] is
adopted here.

Continuity equation
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azimuthal(zr,) and

normal(zs) directions respectively and p is the density, p is the pressure, p is the

coefficient of viscosity and & is the coefficient of thermal conductivity. hq, ks and k3

are the metric coefficients along the coordinates z1, 2, and z3 respectively. In the

generalized curvilinear coordinates, the dissipation function becomes
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The component of stress tensors appearing in the momentum equations Eq. 2.6,
Eq. 2.6 and Eq. 2.7 can be expressed as

HIIII _ —p+ g” laul + 2U2 3h1 2“3 ?hl _ La’UQ _ Us 0/22 ‘
3 hl ()331 /’Llhg d(lf-z hlhg 0:133 hz (9.732 hghg (31‘3

_ U Q_h_z _ Ldu;g _ U1 8/23 _ Ua 0h3
h1h2 8(1‘1 /'23 8.7:3 h1h3 8331 hghg Orl ’

(l 81&2 Uy ()hz 1 5u1 (23] 8h1-
Hr Ty —
w =R e +

h_1 B hlhg 6:01 h_ga‘l'-z B hlhz 0.12_ '

Fiaul o Oh, L(?ztg _ug Ohs]
_h3 8173 hrlhg 8233 hl 8:1:1 h1h3 8:r1~
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I _ +g 36”2 + 2u:3 th + ?.Ul 8h2 _ Laul Uo ahl
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_ us %_ia’t& _ U1 ahg U9 8/’1,3
hlhg 81'3 h3 8323 h1h3 8(31 h2h3 81‘2
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2.1.2 Linearization of the equations

The principle of classical stability theory evolves around the concept of determining

whether a small disturbance introduced into a laminar boundary layer will amplify



or decay. If the disturbance decays, the boundary layer is stable and if the distur-
bance grows it is called linearly unstable. In stability theory, the first step in the
methodology of analyzing the evolution of small disturbances is to assume the “total

flow" as composed of mean quantities and small disturbance quantities.

Q(z1, 1. 23,t) = Q(x1, 72, T3,t) + g1, T2, T3, 1), (2.12)

and in components form

[]l :ﬁ'*'ul ’

Uy = Uy + uy
Us =Us +us,
p=p +7,
T=T+9,
p=p +p, (2.13)

where @ is the total quantity, @ is the mean quantity and ¢ is the disturbance
quantity.

The stability equations are derived as follows: first, the expressions for
total flow quantities, Eqs. 2.13, are substituted into the Navier-Stokes equations
Eqs.( 2.6 - 2.8). Since it is assumed that the mean-flow terms satisfy the steady
Navier-Stokes equations, the mean terms can be subtracted out, resulting in terms
consisting of products of mean-flow and disturbance quantities (@ q) and the products
of disturbance terms (¢q). Secondly, in the linear theory, since the nonlinear terms,
the products of infinitesimal disturbances, are of lower order than rest of the terms,
they are neglected. Substituting the normal mode form for the disturbances, Linear

Stability Equations (LSE) are obtained.



2.1.3 Nondimensionalization of the Equations

As is customary and convenient, the LSE are written in nondimensional form using
some characteristic quantities. The characteristic velocity is U,, which is taken to be
the value of streamwise velocity at the edge of the boundary-layer in 1D formulation
and the boundary layer edge velocity at a reference station z; = 90° in the case of

2D formulation; the characteristic length is L, which is given by the expression

I = ,/”(';f‘ , (2.14)

The thermodynamic quantities are nondimensionalized by their corresponding boundary-

edge values i.e, the characteristic density, temperature and molecular viscosity are
pe, T. and p. respectively, the characteristic pressure is p.U,* and the characteristic
. . L
time 1s 7.

The non-dimensional quantities are

(51 up” u us”
U = y u = PO } - *
A T T,
* 0* -
= 7r * 9 0 = x p = p "
pe U, T. pe
— U — Uy — Uy
Uy = —, Uy = , = —5,
1 0* 2 Lron 3 Uo
T o T
T = * ¥ p - ) /_j = L]
e pe* ;u'e‘
-Tl* 1'2* ‘,1:3*
T = , Ty = ) 3 = —,
1 L 2 L 3 L
t*
t=—U,* 2.15
7 (2.15)

Here the superscript * denotes the dimensional quantities. Some of the non-dimensional

parameters which appear in the equations are defined below.

Free-stream Mach number

U,

M= v KT,

.



Prandtl number

Pr= C'pg . (:

o
—_
-1
~—

Here Prandtl number is assumed to be constant and taken to be 0.7 all through the
computations. The constants of specific heat at constant pressure and volume are

related by

€, = ~C, (2.18)

The values of ratio of specific heats ¥ and gas constant R are taken to be

v =14, (2.19)

R =28Tm*/s*’K- (2.20)

2.1.4 Reduction of the Number of Variables

The Linear Stability Equations contain perturbation terms, uy,ug, us, 7,8, p, ¢ and
k, which are the unknown variables. Since some of these variables are related to
other variables by simple equations such as Eq. 2.4, Eq. 2.17 one can easily elimi-
nate them from the stability equations. This will result in substantial reduction in
computational effort and storage requirements.

The coefficient of viscosity p is assumed to be a function of temperature

only and Sutherland’s viscosity law is used in the computations.

3/2
# (Z) _1+C , (2.21)
e T, T/T.+C
where

C =1104K/T. , (2.22)

and 7. is the temperature at the edge of the boundary-layer. Hence, the total vis-

cosity term which is the sum of mean and perturbation quantities, can be written



as

f+p=puT+9),

and using Taylor series expansion for small temperature fluctuation 6, one can write

= ou(T)
T+0)=ulT ——f ,
mT +0) = p(T) + —=70 +

op

At ot + (2.23)

Hence the disturbance g can be written as

a—-
oty (2.24)

L=

using equation Eq. 2.24 the derivatives of i become

u_ ol omon
c’)x,» N 872 dx; 67‘811

For reasons that would become clear later in this chapter it is chosen to
express 7 in terms of density fluctuation p and temperature fluctuation 6. rather

than eliminating p from LSE. The equation of state in non-dimensional form is
pyM? = pT (2.25)

The pressure fluctuation is related to density and temperature fluctuations by the

expression

TyM?* = pT + 56 , (2.26)

T P .
r= (7M2)p+(7[i’42)9 : (2.27)

And the derivatives of = with respect to the coordinates are

or,
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[
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8w_Ta_p+pgg+1@ L (9p), 5 98
'()SL‘Z' N ‘)/1‘42 011 71"/[2 8T1 ‘7’1\/[2 8:1,‘,' p+“/’1‘/12 a—l‘, ' (..‘....)

Hence, the dependent variables in the stability equations are § = {wr, ug, us. p. 0}T.

2.1.5 Introduction of Harmonic Disturbances

As discussed previously, the stability of a three-dimensional boundary laver is inves-

tigated by seeking a solution of the form:
q(ry, 22, 23,t) = él($1312-$3)6ifadxl_im +c-c - (2.29)

Here q = {1y, iy, s, p, é}T, is a complex amplitude function of the disturbance
variables; a(z) is the wavenumber in the streamwise direction and w is the temporal
frequency of the disturbances.

The first and second derivatives of q(z;, x4, z3,t) with respect to the stream-

wise coordinate z, are

('3 . ~ BA i | adri—tw ¢
a_f. = {za(xl)q(:v1,l‘2,$3) + B—:qu-} e [ adzy—iwt (2.30)
1
0* . da
aqu = {—a2($1)Q($1a’$2’l‘3) +’éx—1Q($1»$2vx3)
1
. a 82‘\ i{oa(r))dr —iw ¢
+ 22a5:—1 + axfl?}e Jotenda—iwt (2.31)

Since the variation of the amplitude part of the disturbance q in the stream-

wise direction is very small, the term 8—2% is neglected and the equation Eq. 2.31

dzr
becomes
82 - .da. . aq t | a(xy)dr) —itw
ax?g ~ {—az(ml)q(:zl,ﬂ:z,fﬂa) —}—za—xlq(a:l,xg,x;;) + 220(5;1:—1 € f {x1)dzy t .

(2.32)



By substituting these expressions into the linear stability equations Eq. 2.6 -
2.8 one can obtain a set of partial differential equations for q. These sets of equations
incorporate the effect of meanflow variation in streamwise direction and approximate
the full Navier-Stokes equations. The concept was first introduced by Herbert [33]
and the resulting equations are termed Parabolized Stability Equations(PSE).

The PSE for compressible flow in generalized coordinates contain number
of terms, and hence, in order to save space, only the linearized continuity equation

in non-dimensional form is given here.

1 Ohs — 1 Oh

10U, U, (. d
1p + — (zap + —B->

et hg(?tlpll Tk 0"V T By B By
t3 lhg g:: Uz + hglhg 32@ hl? 'g%p * (li gfg
5 1h3 g’iﬁf"a * hlhg, g:;”m ;3 gU;f + %()87’;
+ h11h3 %— i 1h2 gZT_ wt hil(;?pl ot Z(m 1Y g—xi) (2.33)
L Ohy_ | ks 105 . 7 Ous

t e, T o t o5t b b2,

p o
1 Ohy_ 1 Ohyi_ lapu3+_p__uE

h2h3 81‘3pu3 hlhg Ba:;;pu?) + h3 3 T3 h3 81‘3

The sets of linear PSE equations for ¢ can be written in matrix form as

0%q 0’4 9%q 0’4 0%q
8&: + A33 32 + Al?’ail?lail)g + 1381‘18333 * 238$28$3

Arg—
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04 04, , 08
+ Y9z + 20172 +BB(9'£3 +Cq=0 (2.34)

Here, A, As, Aiz, A1s, Az, Bi, By, Bs and C are (5x3) complex matri-
ces which are functions of mean-flow quantities and their derivatives, . w and the

metrices hy, ho, ha and their derivatives.

2.1.6 Boundary Conditions

At the solid wall, no-slip conditions apply to the disturbance velocities. The temper-
ature perturbations are assumed to vanish at the solid boundary. This is a reasonable
assumption since for almost any frequency of the gas, the temperature fluctuation
will not penetrate into the solid boundary due to the thermal inertia of the solid

body i.e, the wall can only remain at its mean temperature.

Uy = Uy = Uz = 0= O, at T3 = 0 - (235)

The boundary conditions in the far field are that disturbances decay to zero.
Uy, Ug, Uz, 8 — 0; as T3 — 00. (2.36)

The numerical procedure which is used in the computations need one more
boundary condition to be specified for the density perturbation. Since the den-
sity does not vanish at the wall and the PSE equations are valid both at the solid
boundary and at infinity, the linearized continuity equation or the normal momentum

equation can be used as the fifth boundary condition at the wall and at the farfield.

2.1.7 Linear Stability Equations

2D Problem
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If the z; derivative terms in the Parabolized Stability Equations are dropped.
one can obtain 2D linear stability equations which are systems of partial differential

equations in z; and 3.

0%4 J*q 9%4 ) a9
29 AT A 9 5% 5% L cqg=0 (2.37)

A
20,2 D alczam FER O

This corresponds to applying classical parallel stability theory in the @,

direction and seeking normal mode solution of the form
Q(1, 9, T3, 1) = (22, 23)e T e (2.38)

Here o is the streamwise wavenumber, w is the temporal frequency. In this work,

the temporal stability computations are performed where

a = a,, real prescribed , (2.39)

w=w, + w; - (2.40)
w is computed from the dispersion relation
Fla,w)=0- (2.41)

1D Problem

In this method of formulation the variations of meanflow in the streamwise
direction and azimuthal directions are neglected and the disturbance quantities are
assumed to be periodic in the azimuthal direction. This is equivalent to applying
classical stability theory in z; and z3 directions and to seeking normal mode solution
of the form

q(z1, T2, 23, t) = (zg)domtimm T L enc o (2.42)



Applying the chain rule for the normal derivatives, one obtains

dq(xs) dl 44
des  \dxs/) dy’

d*d(es) _ (_@_)'Z(Fq . < d*y ) dgq

dzy? das W dxs? ) dn
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(2.19)

With these transformations the stability equations in the new coordinate 7 becomes

m\*d*q | / 1é
As )23y tmAag S/ s Bs e
L d£3 (17]

2

[ d
—m2A
+ | m 2 (dl’;}z

’7>+imB2+c]q = 0

(2.50)

The system of equations are discrescretized using fourth-order central finite

difference scheme. At the solid boundary second-order forward differencing and at the

outer boundary and second-order backward differencing are used. The second-order

accurate forward difference formula at j = 1

% _ —3¢; + 4041 — Djt2
an 247 ’

0% _ ¢ — 2041+ b4z
67)2 AUZ

The second-order accurate backward difference formula at farfield (3 = NV ) are

¢ _ 3¢; —40j-1+ ¢j-2
on 2A7 ’

0% _ ¢ — 281+ -2
on? An?

At the grid point next to the solid boundary, j = 2, equations are descretized by the
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third-order four-point finite difference scheme

0p  —0,.1+60;, — 30,11 — 2,42

L = 2.5
an 6An (2.55)
Ro b — 26 »
? ‘125 — Q)J "‘@]-H‘ + Qj+2 . (2.56)
dn An?
Similarly at j = N — 1, third-order four-point finite difference scheme is

8_(D 20,90+ 30;1 —60; — 20,14 (2.57)
an 6An ' =
52 b — 9. -

0%p _0; 20i41 + D42 . (2.58)

on? - An?
At the interior points (j = 3 — N — 2) the equations are descretized using fourth-

order central difference formula

9¢ _ —@i42 + 8041 — 801 + dj_2
on 12A7 ’

¢ _ —@jy2 + 160,41 — 300; + 160, — @;_2 _
dn? 12An?

(2.60)

The descretized system of equations yields an algebraic system equations of

the form

ALZQJ‘_Q + ALl@j_] + AD@j + AUl¢j+1 + AU2¢J‘+2 =0;

j=2,N—-1- (2.61)

Here AL2,AL1,AD,AU1 and AU2 refer to the lower subdiagonal, sub-
diagonal, diagonal, superdiagonal and upper superdiagonal matrices of size (5x5)
respectively. ®; represents the vector q at grid point j. The descretized system of
equations and the homogeneous boundary conditions at the wall and at the outer
boundary yield a homogeneous block penta-diagonal system of the equations as shown

in figure 2.3 .



AD, ||au1,| |Au2,

AU2
AL2,(| ALY AD [ |AUL,| |AYS,

ALz [(AL | |AD [|AUT
2 !

AL2 | |AL, || AD

Fig. 2.3 Block penta-diagonal system
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2.2.2 2D Eigenvalue Problem

In this section, the numerical procedure that is used to solve the 2D eigenvalue
problem is described. The linear stability equations for this case is given in equation
Eq. 2.37. As it was discussed previously, the eigenfunctions are now functions of
azimuthal (z3) and normal (x3) coordinates. The derivatives in the normal direction
can be descretized using the fourth-order central difference scheme that is used in
the solution of 1D problem. The problem is how to descretize the derivatives in the
azimuthal direction. First, they were descretized using the central finite difference
scheme. The solution that was obtained were very oscillatory and it was necessary
to distribute too many grid points in the wr, direction. This turned out to be very
expensive and required enormous memory. Therefore, this method was abandoned
and it was decided to use the Fourier series method to resolve the variables in the x,
direction.

In this method, the dependent variables G and the coeflicients of the partial
differential equations Az, As, As3, B,, B3 and C are represented by Fourier series in

the form

a(zx2, x3) Z Qn(z3)e™, (2.62)

n=—oo
102,333 Z Am e'm2 , -t <z <7 (2-63)
Mm=-—-0oQ

In the numerical procedure, it is necessary to replace the infinite Fourier series by

finite sums in the form

n=Nmaz

g(za,z3) = > Gulzs)e™, (2.64)

n=—Nmaz

m=Mma.r - )
A(zq,23) = Z Am(z3)e™ —m <z <7, (2.65)

m==Mmaz

where N, ., and M, are the maximum number of modes kept in the Fourier expan-

sions for the disturbances and their coefficients respectively. The Fourier components
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Ap, are obtained using the Discrete Fourier Transform formula

_ 1 Mmazr—1 3
Am=g— 5 Am{za)en 1280
...J\[mal‘ m=—Mmaxz

The derivatives of the eigenfunction §(z2,z3) in the 2, direction now become

0q( 2, z3 Nmas . .

_%_) = Y indn(xs)e™?, (2.67)
' n=-=Nmaxr

626](;152 1'3) n=Nmas . . )

ot (=n?)én(zs)e™ - (2.68)
' n:_x'vmax

Substituting these expressions into the governing equation and collecting terms, one

obtains the following ordinary differential equation for each Fourier mode, n,.

n=Nj 2 A ~
- Pan = - din
E A cn——— A - B N
= 3(no-n) p + (zn 23(no-n) T B3(ne n)) dzs

+ {—‘n2/&2(no—n) + inﬁZ(no—n) + é(no—n)} dn = 0,(2.69)

n, = _lvmar’ jvma:r:'

Here

Ny = min{Nmazvno + A/[ma:c} )

Ny = maz{—Nmazs o — Mmaz} - (2.70)

Since the mean velocity is symmetric about the windward plane, z; = 0,
the stability equations permit symmetric and antisymmetric type disturbances. For

symmetric disturbances, the Fourier modes are related by

{ﬁl(—n)7ﬁ3(—n),/§—na9—n} = {ﬁl(nb &3(n)7ﬁn59n} ’ (271)

A

uz(_n) = —ﬁg(n); n = O,Nmax . (272)
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and for antisymmetric disturbances

{{"l(—n)w &3(—71)‘ pA—nﬂ a—n} = _{&1(77.)' ‘1,23(71)7 /A)ns én}s (273)

A~

Ug(—n) = 'llg(n); n = 0, A’rmar ' (274)

Hence. it is sufficient to solve the equation, Eq. 2.69, for n, = 0, Ny.-. Now,
the equations Eq. 2.69 which is similar to equation Eq. 2.44 in 1D problem and can be
solved using the fourth-order central difference scheme. When the equation Eq. 2.69
is descretized using the fourth-order central formula, again an algebraic system of

equations in the form

AL2Q5J‘_2 + ALl@j_l + AD(PJ' + AU1¢J'+1 + AU2(15J-+2 =0;

J=2,N-1- (2.75)

is obtained. The size of the matrices AL2, AL1, AD,AU1 and AU2 now becomes
{5%(Npmazr + 1), 5%(Nmaz + 1)}. The descretized system of equations and the homo-
geneous boundary conditions at the wall and at the outer boundary again yield a
homogeneous block penta-diagonal system of equations as shown in figure 2.3.

Eventhough the block penta-diagonal system can be solved efficiently, it was
found that if the system is rewritten as a banded system it can be solved two times
faster using the LAPACK subroutines ZGBTRF and ZGBTRS. The transformation of
penta-diagonal matrix system into a banded matrix is easily implemented as quoted
in LAPACK user’s guide.

If A represents the penta-diagonal matrix system lL.e,

[ [AD] [AU1] [AU2] ]
[AL1] [AD] [AU1] [AUZ2]

A = | [AL2] [ALl] [AD] [AU1] [AU2] (2.76)

] | [AL.Q] [AL.I] [AD] |
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minimum requirement of 50 Fourier modes in the azimuthal direction and 30 points
in the wall-normal direction, the size of the matrix A becomes (5x50)x30 = 7500

and it takes about 32 hours of CPU-time on a Sun-Ultra 2 workstation.

However, in real situations it is not required to find all the eigenvalues.
It is sufficient to compute a few most unstable eigenmodes. This can easily be
obtained using Implicitly Restarted Arnoldi Method using ARPACK software package
developed by Lehoucq, Sorensen, Yang [1]. This method finds specified number of
eigenvalues in a region close to a specified point in the complex w plane very efficiently.
When applied to an eigenvalue problem with the matrix A of a size of 10000, it takes
only 20 minutes on the same workstation mentioned above to compute 10 eigenvalues
located close to the specified point in the complex w plane.

The rest of the section will focus on the details involved in the formulation of
generalized eigenvalue problem to be solved using the Arnoldi Method. It is observed
from linear stability equation Eq. 2.34, that the frequency w appears as simple = rms

of first power.

- Continuity equation : —wwp + - -,

- 1 momentum equation : —iwpu; + - -,
- r5 momentum equation : —wpPug + - - -,
- 3 momentum equation : —twpuz + - - -,

- Energy equation : —iwpd + ---

Therefore, in an attempt to capture the eigenvalues accurately, the global method
is formulated as a temporal one. The temporal global eigenvalue formulation is as

follows.



In order to solve an eigenvalue problem like equation Eq. 2.78 using the
Arnoldi algorithm using the software package ARPACK, it is required that the ma-
trix B be a symmetric positive definite or a symmetric semi-definite. The appearance
of temporal frequency w as a first power terms only, in the stability equations, suggest
an appropriate selection of disturbance vector of q = {ul,ug,ug.p,@}T with corre-
sponding order of stability equations - x; momentum, r2 momentum, ¥3 momentum
equations, continuity equation and energy equation respectively. This assures the di-
agonal, and hence symmetric formation of matrix B. This is the reason for replacing
pressure fluctuation = by density and temperature in the stability equations.

A further reduction of the generalized eigenvalue problem Eq. 2.78 to a

more storage efficient standard eigenvalue formulation of the form

can be obtained by manipulating the homogeneous boundary conditions. The pro-
cedure will be explained for the case of 1D eigenvalue formulation,and the similar
manipulation can be applied to 2D eigenvalue as well. The only zero rows in matrix

B are that corresponds to the boundary conditions ui, uz, us and 6 as shown below.

10 0 00 ] ([w]) [0 T ([ w]
0 1 o 0 0 --- Ug 0 Ua
0 0 1 0 0 - ) us3 0 Us
Cont eqn p =w 2 P
0 0 o o 1 - L9_1 0 LH 1,
: . SREE |1 J BE — ]| i
A B
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And the middle elements of B take the form

&
[l
<
—_
Q]
0°9]
—

L .

Without any loss of generality in the boundary conditions, the zero terms
in B can be replaced by unity. Further, dividing the continuity equation by i and
momentum and energy equations by 7 will make B an identity matrix. Hence the

resulting eigenvalue problem is reduced to equation Eq. 2.79.

2.2.4 Local Method

The local methods are used to confirm and refine the eigenvalues obtained from
global solver. But, global methods are computationally much more expensive than
the local methods since they compute the whole or part of the eigenvalue spectrum
of the descretized system. However, the local eigenvalue solvers require a guess for

the eigenvalue and hence make the use of a global solver inevitable.

It was shown earlier that, the system of descretized stability equations can
be formed as a lock penta-diagonal system or as banded matrix format. It can be
seen that these equations are homogeneous and in order to avoid trivial solutions,
Malik [34] suggests replacement of boundary condition t;(z,=0) = 0 by the normaliz-
ing condition that the pressure fluctuation (or equivalently density fluctuation in the
present case ) (;,=0) = 1. Thus, the equations are transformed into an inhomoge-
neous system. But here, a different approach will be followed. After experimenting
with a number of different normalizations, it was found that a faster rate of con-

vergence resulted by replacing continuity equation in the middle of the boundary
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layer wall-normal location by the normalizing condition u; = 1 . ( In the case of 2D
eigenvalue problem, a Fourier mode u;, = 1 is used for normalization).

Consider the missing continuity equation denoted by #*(\) = 0. Here A refers
to the exact eigenvalue i.e, the streamwise wavenumber « if it is spatial formulation
or temporal frequency w if the problem is considered as temporal.

Suppose A, represents the guess for the eigenvalue and A\ the error from

the exact value so that ¢ (A + AX) = 0. Now, using Taylor series expansion for AA

o
[is / = 282
G0) + 5 AN =0, (2.82)
w(A,)
_—_— . 92 R
M =5 (2.83)

The iterative procedure for local 1D temporal stability will be described

below.

* For a specified wavenumber «, formulate the penta-diagonal system for shape-
function q, normalize the with ©; = 1 by replacing continuity equation at

wall-normal grid point j,.y where the phase speed C' = w, /e, is about 0.7 .

* [terate on the guess value for temporal frequency w, until the missing continu-
ity equation is satisfied. The correction Aw is determined from the equation

Eq. 2.83.

The procedure for spatial formulation is similar; where temporal frequency
w is fixed and the Newton-Raphson iteration is done on guess value for o until con-
vergence is reached. For 2D eigenvalue problem, a Fourier component with maximum

amplitude is used for the normalization.



2.3 Summary

To conclude this chapter, the formulation are summarized as a schematic diagram.

Parabolized Stabilty Equations
(PSE)

Parallel Flow assumptions

l

1D Eigenvalue Problem 2D Eigenvalue Problem

Global

Y

Local

Local

TN s T

L

Global

Spatial || Temporal| |Temporal

Spatial

L

Temporal{ | Spatial

Fig. 2.4 Stability problem formulation

b

Temporal| | Spatial
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CHAPTER 3
MEANFLOW COMPUTATIONS

The stability computations basically involve two steps. The first step is to
compute the mean velocity profiles accurately. The mean flow can be obtained by
solving the boundary layer equations, Parabolized Navier-Stokes (PNS) equations or
full Navier-Stokes equations depending on the problem that is being analysed. In
this work, we investigate the linear stability of supersonic boundary layers over a
sharp axi-symmetric cone at an angle of attack. The mean flow was computed using
the well developed TLNS3D code which was developed at NASA Langley Research
Center by Vatsa and Wedan (1990) [3].

3.1 TLNS3D

Three-dimensional time-dependent Thin-Layer Navier-Stokes equations are used in
TLNS3D for modelling the flow. The set of equations are obtained from the com-
plete Reynolds-averaged Navier-Stokes equation by retaining only the viscous diffu-
sion terms normal to the solid surfaces. The TLNS3D code employs eddy-viscosity
hypothesis to model turbulence; the Baldwin-Lomax turbulence model is used for
turbulence closure. In this work, the mean flow is computed for laminar flow.

The steady-sate solutions to Thin-Layer Navier-Stokes equations are ob-
tained using a semidiscrete cell-centered finite-volume algorithm, based on a Runge-
Kutta time-stepping scheme. In order to suppress odd-even decoupling and oscil-
lations in the vicinity of shock waves and stagnation points, a linear fourth or-
der difference-based and nolinear second order difference-based dissipation is added.
TLNS3D incorporates both the scalar and matrix forms of the artificial dissipation

models; but in the mean-flow calculation over the sharp cone matrix form is used.
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(x,v,2)

(X, /%Xy ,%3)

Fig. 3.1 The coordinate system for the cone located in a supersonic flow at an angle

of attack (M, = 3.5).

For the sharp cone the Cartesian coordinate system (z,y, z) is located at the
vertex and a body-oriented coordinate system (z,, z3, 23) fixed in time is considered
with z, along the generator, z, in the azimuthal direction and z3 normal to the

surface as shown in figure 3.1.

The coordinate trasformation is given by

x1 = zcos(O) + Rsin(0O) , (3.1)
tan(zz) = y/z , (3.2)
r3 = Rcos(O) — xsin(O) , (3.3)
where
RZ — y2 + 22 .

The govering equations can be written in the conservation form for the body-fitted

coordinate system as
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? OF 9G  9H _ 9G,

Lo =
at(J U+ dzr, OJdx, Oxs Ozz’

where U is the conserved varibale vector and F, (G, and H represents the convective
flux vectors. G, represents the viscous flux vectors normal to the body surface. Here
only the viscous diffusion terms in the rj-direction are retained, due to the fact that
in high-Reynolds-number flows, dominent contribution to the viscous effects are from

viscous diffusion normal to the body-surface.

, 3
p
pu
U=4 pv ¢, (3.5)
pw
pE |
pUr ‘
put + Tipp
F=J7" pyiv+ai,p | (3.6)
pUIW + T1,p
[ pml
) s N
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puW + T2,p
\ pusH
) s
pus + T3P
H=J" pusv+ T3P (s (3.8)
pusw + r3.p
pusH )
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0
Moo O1Uzy + T3,.02
G, = A T (3.9)
O1Wey + T3,02
p1a + vy

where

—_ g 2 L2 w2
él _'13,1* +‘l3y +‘132 bl

‘ 1
Oy = .—<‘E3rul‘3 + T3y U, + .'1‘32U)1-3) )

3

¢ =u?+ 0+ w?, (3.10)

2
_{4q Y 1 _
a = (_2)I3+ (7_1) Prsz

Here (u,v,w) are the velocity components in the (z,y,z) directions and
(u1,u2, uz) are the contravarient velocity components (velocities along the body-fitted

coordinate directions) which are defined as

UL = T1.U + T,V + T,w
Uy = T, U + Ty, ¥ + To,w ,

U3 = T3,U + T3,V + T3,Ww , (3.11)

p is the density, p is the pressure, and E is the total energy. J is the Jacobian of
the transformation and x;; are the direction cosines. Additionally, u is the viscosity,
M, = 7;%57: is the free-stream Mach number, Re,, = % 1s the free-stream unit

Reynolds number, and Pr = %ﬂ 1s the Prandtl number.

Distribution of temperature can easily be obtained from the expression



Since the steady state flow is symmetric about the plane through the wind-
ward and leeward rays, the mean flow computations were done in the half plane (

vy = 0% to 3 = 180° ). By symmetry,

{urus, p, T}, = {1, ua, 0, TY s, (3.13)

11’2‘1‘2 = _lt2'rg ' (314’)

3.2 Boundary-layer Profiles

The physical parameters for which the computations were performed are given in

table 3.1 .

Table 3.1 Details of the cone problem

Parameter Value
Half cone angle 5°
Angle of attack 2°

Iree-stream temperature | 94°K
Free-stream Mach number | 3.5

Unit Reynolds number 8.7x10% /m
Cone length 1.574m

The computations were done at the adiabatic wall conditions. In the com-
putation of the meanflow using TLNS3D a mesh size of (97x257x49), i.e, 97 points
in the streamwise direction, 257 points in the normal direction and 49 points in the
azimuthal direction ( windward ray to leeward ray) were used.

The mean-flow profiles at four different streamwise locations (z, = 0.033m,
0.197m, 0.3505m and 0.5105m), where the linear stability computations were per-
formed, are presented. The thickness of the boundary layers at the four streamwise

locations for different azimuthal stations are plotted in figures 3.3. Here, the bound-
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Fig. 3.2 Schematic diagram of cross-flow and streamwise velocity profile (Reed &
Saric).

ary layer thickness is defined at a wall-normal location where the values of streamwise
velocities at consecutive normal points differ by less than 0.1%. It is seen that the
boundary layer thickness inceases sharply about three times when the flow goes from
leaward to windward plane. In the left ordinate the boundary layer thickness is plot-
ted in mm and in the right ordinate the nondimensional thickness z3 is shown, which

is defined as

.’L'3*

(3.15)

T3 = .
vz *
U.*
Figure 3.4 depict the variation of the boundary layer edge velocity U, in the az-
imuthal direction at different streamwise locations. As it is seen the variation of the
velocity is small in the azimuthal direction.

First, the meanflow profiles at the streamwise station z; = 0.033m are
given. The velocity profiles tangent to the inviscid stream line at different azimuthal

locations are shown in figure 3.5. There are significantly different characteristic

profiles on the windward and leeward planes. On the the windward side, boundary-
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layer is comparatively thin and gradients are quite larger near the wall. On the

leeward plane much thicker layer with smaller surface shear is apparant.

Figure 3.6 show the cross-flow profiles along azimuthal z, locations. The
cross-flow components were non-dimensionalized with the boundary-layer edge ve-
locity, and positive cross-flow is taken towards positive z; direction and away from
1 direction as shown in figure 3.2. The cross-flow velocities exhibit local maximum
values at r3 = 90° and reaches values between 4% and 6% of the freestream velocity.
Closer to the leeward side (around r; = 160° ) negative cross-flow is evident l.e,
cross-flow component changes in sign before it decays to zero towards the boundary-
layer edge. As could be expected, cross-flow phenomena dissapear in windward and

leeward rays due to the symmetry in the mean-flow.

Figure 3.7 shows the azimuthal velocity distributions at different azimuthal
locations. Figures 3.8 and 3.9 show the density and temperature distributions at
this z; location. The similar results of the mean-flow profiles at the other three
streamwise locations z; = 0.3505m and 0.5105m are presented in figures 3.11 to

3.19.

The velocities are nondimensionalized by the characteristic velocity U™*,
which is taken to be the local velocity at the edge of the boundary layer in the
streamwise direction in 1D formulation and the boundary layer edge velocity at a
reference station z; = 90° in the case of 2D formulation. The normal coordinate is
normalized by the length scale

V*el'l*

o (3.16)

where v, is the kinematic viscosity at the edge of the boundary layer. It is seen
that except close to the leeward plane region the boundary layer profiles are almost
linear in most part of the boundary layer and the boundary layer thickness increases

gradually. Very close to the leeward plane , the profiles exhibit very strong inflectional
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character, especially 165° < r, < 180°. Figure 3.6 shows the crossflow velocity
component in the positive ; direction at different azimuthal locations. It is observed
as expected that the crossflow velocity is zero at the windward and leeward planes
and reaches maximum in the middle of the refion 90° < 9 < 120° The maximum
crossflow velocity is about 4% of the boundary layer edge velocity. From this it is
also expected that the boundary layer will be very unstable in the middle region
compared to the region near the windward or leeward planes.

Figures 3.21 shows the contours of the crossflow Reynolds number defined

by
maz‘é (i) —
Re, = @mazdion , (3.17)

Ve
in the zyx; plane. Here Q... is the maximum cross-flow velocity (located at 6,,,,
), and 8;q¢ is the thickness defined by the point above é,,,, at which the cross-flow
velocity is 10% of Qmaz. As expected the cross flow Reynolds number is maximum
in the middle region and increases with the z, direction. The maximum cross-flow

Reynolds number is about 250 at z; = 0.5105m.
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different streamwise locations.
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CHAPTER 4
RESULTS AND DISCUSSION

In this chapter. the linear stability results obtained using the 1D eigenvalue
method and the 2D eigenvalue method are presented. In order to study the evolution
of the disturbances downstream, the 1D and 2D stability computations are performed
at different locations along the streamwise direction : z; = 0.033m. 0.197m. 0.3505m
and 0.5105m. The results are presented in two sections. In the first section, the
computational results from 1D eigenvalue approach are given and the results from

the 2D eigenvalue approach are presented in section 2.

4.1 1D Eigenvalue problem

Before proceeding to present the linear 1D eigenvalue results, the computational grid
used in the computations are described. As mentioned in Chapter 2, the height of the
computational domain was taken to be about four times the boundary layer thickness.
This was necessary because, eventhough most of the perturbations decay to zero
within the boundary layer, density and normal velocity perturbations persist until
about three to four times the boundary layer thickness. The computational domain
consisted of 85 points in the wall-normal direction, with first 43 points clustered
within the boundary layer according to the algebraic grid-stretching given by equation
Eq. 2.47. Because of enormous requirement of the storage, the grids points in the
2D eigenvalue computation are limited to 49 points. To create a general platform for
the comparison of linear 1D and 2D eigenvalue results, 1D eigenvalue problem was
also solved on a grid size of 49 for few cases. The stability results computed on a
grid size of 49 are found to be accurate within five decimal points to that of obtained

with 85 grid points.
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[t was explained in Chapter 2 that in the eigenvalue computations, since
the local method requires a guess value, a global method has to be first used to
compute the whole or part of the eigenvalue spectrum. In the present work. the 1D
global eigenvalue computations are performed using the QZ algorithm of the subrou-
tine ZGEGV in LAPACK software library. For a typical 1D problem with 85 points
in the normal direction, the leading dimension of the matrix A of the generalized
eigenvalue problem becomes (5x85) = 425 and it takes only 30 seconds on a Sparc-
Ultra-2 workstation (333MHz) to compute all of the eigenvalues. These spectrum
of eigenvalues showed only one, or two physical eigenvalues which are unstable. It
was found that, in 1D eigenvalue computations, the initial guess value need not be
close to the unstable eigenvalue sought. Therefore, 1D eigenvalue computations are
performed, in most cases, using the iterative local solver by the continuation method,
i.e, using the eigenvalue at the previous location as the initial guess for the current
location.

To orient the reader with the co-ordinate system used, a schematic diagram

showing flow and wave propagation directions is depicted in figure 4.1. Here m which

‘ x2 Wave direction
Normal to inviscid
stream line m
\ . .
‘\ Inviscid Stream line
\
\- Wave angle
\' Tangent to inviscid
\ b4 stream line
\ £ et -
\ A
Tt Xy
-
o (02

Fig. 4.1 Schematic diagram of the flow and the wave directions



is an integer, is the number of waves in the azimuthal direction. In order to determine
the unstable region of the boundary layer, first several eigenvalue computations were
performed along the azimuthal direction from windward ray to the leeward ray at
number of fixed streamwise locations xy, for different streamwise wavenumber o and
azimuthal mode number m. A sequence of such computations starting from a r,
location closer to the tip of the cone exhibited that the region up to &y = 0.03m
is linearly stable. Hence, the linear stability results at four z, locations starting
from z; = 0.033m are given here. The length, velocity and time scales used to

nondimensionalize the variables are as follows.

Table 4.1 Parameters used in nondimensionalization of different scales.

Parameter | Streamwise distance, x,/[m]
0.033 | 0.197 | 0.3505 | 0.5105
L /fmm] | 0.0627 | 0.146 | 0.192 | 0.231
U./lm/s] |663.3 |659.7 | 658.4 | 658.2
£x108 /[s] | 9.46 |22.13 |29.18 | 35.11

The linear 1D stability results at streamwise locations z; = 0.033m, @, =
0.197m, z; = 0.3505m and z; = 0.5105m are shown in the figures 4.2 to 4.6, 4.8
to 4.11, 4.12 to 4.19 and 4.20 to 4.22 respectively. Because the stability results
at these stations are similar, only the results at z; = 0.033m and z; = 0.3505m are
discussed in details.
z1 = 0.033m

The figures 4.2a, 4.2b, 4.3a and 4.3b show the variation of temporal ampli-
fication rates w; and temporal frequency w, with streamwise wavenumber o for dif-
ferent azimuthal mode number m computed at the streamwise location z; = 0.033m
at different azimuthal positions z, = 45°, xo = 90°, zo = 120° and z, = 150°

respectively. The results show that the temporal frequency w, varies linearly with
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wavenumber « for all the azimuthal mode numbers shown and that the phase speeds,
defined as €' = 2=, are approximately constant and equal to 0.7. Further, the station-
ary waves, i.e, w, = 0, are stable at this x; location. At r, = 45°, the disturbances
are linearly unstable for —15 < m < —9. The maximum amplification rate is about
0.0006 and occurs at m = —12 and a = 0.1 . The similar variations of the temporal
amplification rates are observed at x = 90%, z; = 120° and xr,; = 150°. However,
as one moves from the windward side x, = 45°, toward the leeward side x; = 150,
the unstable streamwise wavenumber « shift from a range of (0.07 ~ .13) to (0.02 ~
0.07). The locally most amplified frequency is found to be w = (0.038,0.00101) at the
azimuthal location of x5 = 120° for o = 0.07 and m = —9 and w = (0.03,0.00103)
at £, = 150° for a = 0.05 and m = —6. The negative sign of the mode number m

indicates that the propagation of the disturbance wave is in the negative side of z,.

The local wave propagation direction is given by

(7)

r

Y = tan™!

(4.1)

where R is the radius of the cone. The wave angles for the most amplified wave at
different z, locations are given in the Table 4.2. In this table, € is the inclination of
the inviscid stream line to the z; axis (figure 4.1). One can see that in the negative
z direction most amplified waves are inclined at about 70° from the inviscid stream

line. Figures 4.4 and 4.5 show the variation of the amplification rate w; and the

Table 4.2 The waveangles for the most amplified wave at different z, locations.

zo/[P) e/l —/l] | o=~V e
45 | 1.68 | 69.09 70.77
90 | 2.73 | 69.09 71.82
120 | 2.30 | 71.67 73.39
150 | 1.22 | 71.02 72.24

frequency w, along the azimuthal direction for a constant wavenumber a = 0.05
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for different azimuthal mode number m. Figures 4.6 and 4.7 depict the results
for a = 0.07. It is observed that the frequencies are lower in the middle than they
are near the windward and leeward regions. This is due to the fact that cross-flow
instability is dominated by low frequency disturbances compared to that without
the cross-flow. As discussed in Chapter 2. the cross-flow is maximum in the middle
region and hence the most unstable disturbances are low frequencies compared to

that near the windward and leeward plane.

21 = 0.3505m

The variation of the temporal amplification rate w; and frequency w, with
wavenumber o, at z, = 0°, 20°, 41°, 97°, 120° and 160° at the streamwise location
x; = 0.3505m are plotted in figures 4.12a, 4.12b, 4.13a, 4.13b, 4.14¢ and 4.14b.
Figures 4.15 and 4.16 show the variation of the amplification rate and the frequency
along the azimuthal direction for a constant wavenumber a = 0.07 for different
azimuthal mode number m. It is seen from the figure 4.12 that the amplification rates
are the highest closer to @ = 0.07. First observation is that the amplification rates are
high for disturbances with m = —30 to —40. The maximum amplification rate is w; =
0.0046 and this occurs around z, = 90° for m = —30 and & = 0.07. The amplification
rates between 40° < x, < 130° vary in the range from 0.004 to 0.0046 and it decreases
gradually to 0.0026 and 0.003 at z; = 0° and 160° respectively. The most unstable
frequencies are lower in the middle region compared to that near the windward and
- leeward planes. For m = —30 and « = 0.07 the frequency of unstable disturbance
is 0.039 at z, = 80° and they are 0.046 and 0.051 at z, = 0° and 160° respectively.
These translate to 17.67 kHz at z, = 80° and 20.83 kHz and 23.1 kHz at x, = 0° and
160° respectively. It is also seen that the frequencies of the unstable disturbances
decrease with increasing negative m. For m = —60, the unstable frequency is 0.034
at z, = 80° and it is 0.041 for m = —20. The reason for this is that with increasing

m, the wavevector aligns closer to the cross-flow direction and the frequencies of the



unstable disturbances decrease. The results show that the amplification rate of the
disturbances with positive m are small except closer to the windward plane. It is
also observed that at the windward plane x; = 0° the eigenvalues for the positive
and negative m have the same values. This is due to the fact that at z, = 0°,
the cross-flow velocity is zero and the meanflow is two-dimensional and it does not
differentiate between positive and negative m values. When one moves away {rom the
windward plane the cross-flow velocity increases, hence the mean flow becomes three-
dimensional and the eigenvalues depend on the positive or the negative direction at
which the wavevector is aligned. Another observation is that there is an apparent
symmetry about the eigenvalues about r, = 90°. This can be explained from the
observation that the maximum cross-flow velocity increases from zero to a peak value
in the middle and decreases to zero again at the leeward plane. Hence the velocity
profiles are approximately symmetrical about the middle plane and it is expected
that the eigenvalues will also be symmetric. This observation becomes important

when the results from 2D eigenvalue approach is interpreted in the next section.

As a prelude to later comparisons, all the eigenvalues obtained for different
azimuthal mode numbers m at different azimuthal locations for the wavenumber
« = 0.074 are plotted in the complex w-plane in figure 4.17. This is a representation
of figures 4.15 and 4.16 in the complex plane. Some of the azimuthal locations z; at
which these eigenvalues are computed are also marked. One thing to conclude from
this figure is that the eigenvalues are clustered in a confined region in the complex w-
plane. Figure 4.18 and 4.19 depict the amplitudes of eigenfunction distribution for
the streamwise velocity |u;| and normal velocity |us| at different azimuthal locations
for m = —30 and o = 0.07. It is seen that the eigenfunctions for the streamwise
velocity decrease to zero at the edge of the boundary layer, however, the eigenfunction
for the normal velocity decrease to zero slowly. Another observation is that the

locations of the maximum amplitude move towards the edge of the boundary layer
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when one moves toward the leeward plane from the windward plane. Similarly fig-
ures 4.20 to 4.22 show the 1D stability results obtained at the streamwise location
r1 = 0.5105m.

Summarizing the linear stability results of 1D eigenvalue method the fol-

lowing conclusions can be made.

o The boundary layer region up to x; = 0.03m is linearly stable and is unstable
beyond that location. However, the neutral stability region is not a straight
line across the cone at z; = 0.03m but is curved with the front of the neutral
stability region falling near 90°. This is due to the effect of varying cross-flow

components from windward to leeward locations.

e The most amplified temporal amplification rate occurs around z, = 90° for a

streamwise wavenumber o = 0.07 and azimuthal mode number m = —30, —40.

e The effect of cross-flow component is dominant in the middle region in azimuthal
direction and this is manifested in the increase in the temporal amplification
rate around zo = 90° for negative m = —10 to —60 and the temporal amplifi-

cation rate for positive m values.

e The unstable temporal disturbance waves with most amplification rate w; travel
in the negative side of z, direction. The unstable waves propagating in the

positive side of z, become stable after z2 = 90°.
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4.2 2D Eigenvalue Problem

In this section, the results from the 2D eigenvalue computations are presented. The
computations are performed at different xy locations r; = 0.033m, z, = 0.197Tm
o1 = 0.3505m and x; = 0.5105m.

As mentioned earlier, the main difficulty in the 2D eigenvalue computations
is the requirement of large memory capacity. Therefore, in a typical 2D eigenvalue
computations the maximum number of grid points in the wall-normal direction is
limited to 49 points and the Fourier modes to a maximum of 89. However, in the
regions close to the tip of the cone, it was found that most of the unstable disturbances
could be captured accurately with 59 Fourier modes. This permitted the eigenvalue
computations at x; = 0.033m be performed with 65 wall-normal points and these

results are found to be consistent with that of 49 normal points and 89 Fourier modes.

Unlike in 1D stability computations where the eigenvalue spectrum for a
given azimuthal mode number m consisted only of a few sparse unstable eigenval-
ues. it was found from the 2D eigenvalue computations that the eigenvalue spectrum
showed a clustered nature of the unstable eigenvalues in the complex w plane. There-
fore. it is necessary that prescribed initial guess for the local 2D solver be accurate,
otherwise the solution might converge to some other eigenvalue. For the above men-
tioned typical 2D problem with 49 points in the wall-normal direction and 89 Fourier
modes, the leading dimension of the matrix A of the generalized eigenvalue problem
becomes (5x[89+1]x49) = 22050. It takes more than 200 CPU-hours on a Sparc-
Ultra-2 workstation(333MHz) and requires about 450 MW memory to compute all
the eigenvalues. Therefore, the ARPACK software package employing the Implicitly
Restarted Arnoldi Method (refer Chapter 2 for details) is used to obtain a specified
number of eigenvalues in a region close to a given point in the complex w plane.

When applied to the same problem of size 22050 , it takes only about 2 hours to



compute 10 eigenvalues that are located close to specified region of interest. on the

workstation quoted above.

The 2D stability computations performed at streamwise locations =, =
0.033m. 0.197m. 0.3505m and 0.5105m and the corresponding results are presented in
figures 4.43 to 4.61. 1.62to 4.76,4.23 to 4.41 and 4.77 to 4.90 respectively. From
the linear stability results of 1D eigenvalue method it was noted that the maximum
temporal amplification rates in the unstable boundary layer region occurred for the
range of wave numbers a = 0.06 to 0.1 . Therefore the 2D eigenvalue computations
are performed for the same range of a. The stability results at the above mentioned
stations are found to be similar, and hence results at z; = 0.3505m are discussed in
details first.

x1 = 0.3505m

Figures 4.23 to 4.41 show the results obtained at station z; = 0.3505m for
seven different eigenvalues, both symmetric and anti-symmetric modes, for o = 0.07.
As it was discussed earlier, there exists large number of eigenvalues and the results
are presented only for the most amplified disturbances. In the symmetric mode,
the disturbances are assumed to be symmetric about the windward plane (z, = 0°)
and in the antisymmetric mode the disturbances are taken to be antisymmetric ( for
detailed explanations refer Chapter 2).

Figure 4.23a shows the distribution of streamwise velocity disturbance 1 cal
along the azimuthal direction at the wall-normal height z3 = 0.72lmm where it
has the maximum amplitude for the wavenumber a = 0.07 and the eigenvalue is

w = (0.0386,0.00437). The local Reynolds number is 1823 which is defined as

U,z
Re = \| =~ (4.2)
v
It can be seen that the disturbances are symmetric about z; = 0° and confined

between 80° to 140° with the maximum amplitude occurring at 120°. The corre-
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sponding distribution of Fourier components of the streamwise velocity disturbance
luy;| with Fourier modes m is plotted in figure 4.23b. It is noted that the Fourier
components |u;¢| falls in a bell-shape distribution with negligible magnitude until
m = 20 then sharply increasing to a maximum around m = 40 ~ 50 and thereafter
decaying gradually to zero around m = 80. The contour plots of |u;| and uireq in the
positive z,x3 plane for the same temporal eigenvalue w are depicted in figure 4.24a
and 4.24b. The distribution of the streamwise velocity disturbance profile and nor-
mal velocity disturbance profile are plotted in figures 4.25a and 4.25b respectively.
It can be observed that the normal velocity perturbation w3 persist until about four
times the boundary layer thickness, whereas the streamwise velocity perturbation
decays to zero within the boundary layer, which is equal to z3 = 20 in nondimensional
quantity. (The variation of the boundary-layer thickness in azimuthal direction at

different streamwise locations are presented in figure 3.3).

The figures 4.26 to 4.27, 4.28 to 4.29 rresent the results of symmetric
disturbances with w = (0.04205,0.00272) and w = (0.0491,0.00264) which are similar
to the previous results corresponding to w = (0.0386,0.00437). However, a closer
examination of these results show that the clustered disturbances shift towards the
leeward side with disturbance amplitude peaking at z; = 140° and z, = 160° for
w = (0.04205,0.00272) and w = (0.0491,0.00264) respectively.

The 2D stability results for w = (0.04199,0.00349) are shown in 4.30 to 1.32
and, in contrast to the previous results discussed, they have some different interesting
features. Figure 4.30a shows the distribution of streamwise velocity disturbance
{l1req: along the azimuthal direction at the wall-normal height z3 = 0.487Tmm. An
important observation is that , considering only the half azimuthal plane z; = 0° to
r, = 180°, the disturbances are clustered in two different regions - around z; = 30°
and 140°. This complies with the observation of 1D results that there is an apparent

symmetry of the eigenvalues about z2 = 90° caused by an approximately symmetric
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distribution of cross-flow in the middle azimuthal direction. However, looking at the
figure 4.30b which depicts the distribution of tii,cq; along the azimuthal direction at
r3 = 0.85mm, it is apparent that the disturbances clustered around z; = 30° decay to
zero whereas the counterparts at z, = 140° grow to a maximum. The corresponding
distribution of Fourier components of the streamwise velocity disturbance |u,;| with
Fourier modes m is plotted in figure 4.31. The similar results of an eigenvalue w =
(0.0451.0.00272) that exhibits clustered disturbance eigenfunctions around rz = 10°
and 150° are shown in figures 4.33 to 4.35.

Next, the results for anti-symmetric modes are presented. The figures 4.36
to 4.37 show the results of w = (0.0437,0.0025). From figure 4.36a one can note
that the disturbances are anti-symmetric and clustered around z; = —150° and 150°.
Also, the results for the case of w = (0.0435,0.00315) are presented in figures 4.38 to
4.41. The results show that the disturbances are clustered around z, = 30° and 1507,
considering only the positive half of the azimuthal plane. However, the disturbances
around x5 = 30° are dominant and larger than the disturbances closer to the leeward
side.

An important observation about the results of symmetric and anti-symmetric
disturbances is that for identical eigenvalues , there are apparently not much differ-
ence between the eigenfunction distributions of symmetric and anti-symmetric modes
which are clustered around the middle of the azimuthal plane. However, eigenfunc-
tions that peak close to the windward side exhibit a noticeable differences between
symmetric and anti-symmetric modes. This observation suggest that these clustered
disturbances in the middle of the azimuthal direction are not affected by the mean-
flow quantities (especially the azimuthal velocity components ) away from them and
there is not much interaction between the disturbances in the positive half and the
negative half of the z;z3 plane.

Finally, the distribution of the 2D eigenvalue spectrum need to be discussed.
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Figure 4.42a shows the plot of temporal amplification rate w; with frequency w,
for wavenumber o = 0.07 at z; = 0.3505m. The maximum amplification rate is
w;: = 0.00437 and the corresponding frequency w, = 0.0386. The eigenfunctions for
this eigenvalue are clustered in the middle of the azimuthal plane and peak around
ry = 120°. The z, locations where the eigenfunctions peak are also marked on the
figure. An eigenvalue marked with two angles indicates that the disturbances are
clustered at two isolated z, regions and peak at the angles quoted. In figure 4.426
the 1D eigenvalues along with the 2D eigenvalues are plotted on complex w plane. A
closer examination of this figure show that the most amplified temporal amplification
rates of 2D stability method occur around xz = 120° whereas in 1D method they fall
around z, = 90°. The shift in the most amplified temporal amplification rates w; of
the 2D eigenvalues toward the leeward side can be possibly explained as follows. The
instability is determined by the degree of inflection of the meanflow profiles and the
contribution of cross-flow components towards instability is maximum at r, = 90°.
This is clearly manifested in the maximum increase of the amplification rates of 1D
eigenvalue method. However, in the case of 2D eigenvalue method which incorporates
the variation of meanflow in the azimuthal direction, the meanflow is more unstable
towards the leeward side and therefore shifting the most amplification rates toward
the leeward side.
z1 = 0.033m

Figures 4.43 to 4.61 depict the results obtained at z; = 0.033m for different
axial wavenumbers o = 0.07, 0.08, 0.09 and 0.1. Figure 4.43 shows the distribution
of eigenfunction and the Fourier components for w = (0.0391, 0.00128) and axial
wavenumber @ = 0.07. The corresponding frequency is 65.8 kHz. It can be noted
that the eigenfunction clustered around 120°. The maximum amplification of the
eigenfunction occurs at a wall-normal height of z3 = 0.255m, and which is about 70

% of the boundary-layer thickness ( For detailed data on distribution of boundary
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layer thickness refer to figure 3.3 ). The contour plot for the absolute value of the
streamwise perturbation velocity is shown in figure 4.44. Figure 4.43 shows the
eigenfunction distribution for the axial velocity and the normal velocity at different
azimuthal stations. The similar plots for an eigenvalue w = (0.0387, 0.00311) are
given in figures 4.46 to 4.47. In figure 4.48 the plots of eigenfunction distributions
are given for the frequency of f = 110.4kHz=. Figures 4.49 to 4.50 show the results
for the axial wavenumber a = 0.1 and w=(0.0656,0.000114). Unlike the previous
two cases, this eigenfunctions is clustered around z; = 0° for z3 < 0.105mm and
around 5, = 130° for x5 > 0.105mm. Figure 4.49 shows the spectral distribution
of the axial velocity at different heights with the mode number m. The distribution
of streamwise velocity perturbation and temperature perturbation profiles along the
azimuthal direction are depicted in figure 4.50 and 4.51 respectively. Figures 4.52 to
4.53 show the similar results for the case of anti-symmetric mode with frequency of
107.6 kHz, w = (0.0639, 0.00094) and o = 0.1. Also the figures 4.54 to 4.57 depict the
similar distributions for & = 0.08, w= (0.05039, 0.00164) where the eigenfunction has
maximum amplitude around z; = 0° and 140°. Similarly figures 4.58 to 4.61 show
the eigenfunction distributions and the mode shapes for anti-symmetric disturbances
at a = 0.08.

1 = 0.1978m

Similarly figures 4.62 to 4.76 show the results obtained at z; = 0.1978m

 at different axial wavenumbers. Figures 4.62 to 4.63 depict the case of a symmetric

mode where the eigenfunctions are clustered around 120°. In figures 4.64 to 4.67
the distribution of eigenfunctions for a symmetric mode with frequency 42.2 kHz
, w = (0.0589, 0.00301) and wavenumber a = 0.09 are plotted. It can be noted
that the eigenfunctions clustered around z; = 0° and z, = 150°. However, the

amplitude of the eigenfunctions at z; = 0% are dominant for z3; = 0.287mm and die

out gradually as one moves towards the edge of the boundary layer. Figures 4.68
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and 4.69 show the results for w = (0.0572, 0.00348) and figures 4.70to 4.71, 4.72 to
4.74 and 4.75 to 4.76 show the distribution of the axial velocity fluctuations along
the azimuthal direction and the spectral distributions for different w = (0.06056.
0.00328), (0.0563. 0.00131), (0.0574, 0.00115) and (0.0546, 0.00161). It is observed
that the eigenfunctions are clustered near the windward side for these eigenvalues.
ry = 0.5105m

The 2D stability results at the station z; = 0.5105m are given in figures
4.77 to 4.90. Figures 4.77 to 4.78, 4.79 to 4.80, 4.81 to 4.82, 4.33 to 4.85.
show the eigenfunctions and the spectral distribution for four different eigenvalues w
= (0.0385, 0.00445), (0.0423, 0.00351), (0.0419, 0.00439), (0.0507, 0.00288) for sym-
metric modes. Eigenfunction corresponding to the first eigenvalue peaks around 120°
and the spectral distribution has a Gausian shape as observed in other stations. The
eigenfunctions corresponding to the second eigenvalue are confined to two isolated
regions, one near the windward side between 0° - 50° and the other near the lee-
ward side between 120° - 150°. The corresponding spectral shape shows two different
types of distributions at the edge of the boundary layer the shape has a Gausian
distribution and near the wall a modulated shape is observed. This observation is
made in other stations when the eigenfunctions are clustered in two regions. Similar
observation is made for the fourth eigenvalue. Eigenfunction for the third eigenvalue
peaks around 20° and the spectral distribution has a Gausian shape with a long tail
at higher mode numbers.

Figure 4.86 to 4.88, 4.89 to 4.90 show the eigenfunctions and the spectral
distributions for two different eigenvalues w = (0.0486, 0.0427), (0.0517, 0.00411) for
anti-symmetric modes. The eigenfunctions are confined to two different regions, one
close to the windward side and the other close to the leeward side and as it was

observed earlier, the spectral distributions show two different shapes.

The results of the 2D linear stability results can be summarized as follows.
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e Spectrum of 2D eigenvalues exhibits clustered nature of eigenvalues in the w plane.

e As expected earlier, the distributions of the disturbances along the azimuthal di-
rection x, are clustered in confined regions. In the cases where the disturbances
are clustered in two different regions in x, direction, they are nearly symmetric

about r, = 90°.

o The most amplified temporal amplification rates occur around x, = 120°.

e The differences between eigenfunctions of symmetric and anti-symmetric modes
are pronounced when the eigenfunction distributions are confined near the
windward side (z; = 0°). However, the differences are insignificant when the

eigenfunctions are confined in the middle region.
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Fig. 4.23 Case 1: The distribution of eigenfunction and Fourier components for a
symmetric mode with frequency f = 21 kHz. ( w = (0.0386, 0.00437) , a = 0.07. (
z; = 0.3505m and Re = 1823).
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kHz , w = (0.0386, 0.00437) , a = 0.07 , =, = 0.3505m and Re = 1823 ).
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symmetric mode with frequency f = 22.9 kHz. (w = (0.04205, 0.00272) , a = 0.07
71 = 0.3505m and Re = 1823)
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Fig. 4.28 Case 3: The distribution of eigenfunction and Fourier components for a

symmetric mode with frequency f = 26.8 kHz. (w = (0.0491, 0.0026) , « = 0.07,
z; = 0.3505m and Re = 1823)
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Fig. 4.32 Case 4: Contour plot of streamwise velocity disturbance. (frequency
f = 2287 kHz , w = (0.0419, 0.00349) , « =0.07 , z; = 0.3505m and Re =
1823 )
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Fig. 4.33 Case 5: The distribution of eigenfunction for a symmetric mode with
frequency f = 24.6 kHz , w = (0.0451, 0.00272) ,& = 0.07, x; = 0.3505m and Re =
1823)
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Fig. 4.34 Case 5: The distribution of Fourier components of streamwise velocity
disturbance |u;s| with Fourier modes m at different heights. (frequency f = 24.6
kHz , w = (0.0451, 0.00272) , « = 0.07 , z; = 0.3505m and Re = 1823 ).
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Fig. 4.35 Case 5: Contour plot of streamwise velocity disturbance. (frequency

f = 246 kHz , w = (0.0451, 0.00272) , @ = 0.07 , z; = 0.3505m and Re =
1823 ).
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Fig. 4.36 Case 6: The distribution of eigenfunction and Fourier components for an
anti-symmetric mode with frequency f =23.81 kHz , w = (0.0437, 0.0025) , a = 0.07,

z; = 0.3505m and Re = 1823)
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Fig. 4.39 Case 7: The distribution of Fourier components of streamwise velocity
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Fig. 4.42 Case 7: Unstable eigenvalue spectrums of a) 2D eigenvalue method and
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zy = 0.3505m and Re = 1823 )
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Fig. 4.48 Case 3: The distribution of eigenfunction for a symmetric mode with
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Fig. 4.50 Case 3: The distribution of streamwise velocity perturbation profiles along
the azimuthal direction. (frequency f = 110.4 kHz , w = (0.0656, 0.000114) , o = 0.1,
zy = 0.033m and Re = 531)
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Fig. 4.51 Case 3: The distribution of temperature perturbation profiles along the
azimuthal direction. (frequency f = 110.4 kHz , w = (0.0656, 0.000114) , o = 0.1,
z1 = 0.033m and Re = 531)
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Fig. 4.52 Case 4: The distribution of eigenfunction for a symmetric mode with
frequency f = 107.6 kHz. ( w = (0.0639, 0.00094) , « = 0.1, z; = 0.033m, and Re
= 531)
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Fig. 4.53 Case 4: The distribution of Fourier components of streamwise velocity
disturbance |u;s| with Fourier modes m at different heights. (frequency f = 107.6
kHz , w = (0.0639, 0.00094) , @ = 0.1, z; = 0.033m and Re = 531 )
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Fig. 4.54 Case 5: The distribution of eigenfunction for a symmetric mode with

frequency f = 84.8 kHz. ( w = (0.05039, 0.00164) , a = 0.08. ( z, = 0.033m, and
Re = 531)



141

0.050 e

0.040 ~
x,=0.105mm 1

T

0.030 -

abSU-‘f - { -\'\.

0.020

0.010 |+ -

0.000 Sl ' '
0 10 20 30 40 50 60

Fig. 4.55 Case 5: The distribution of Fourier components of streamwise velocity
disturbance |ui| with Fourier modes m at different heights. (frequency f = 848
kHz , w = (0.05039, 0.00164) , « = 0.08 , 2; = 0.033m and Re = 331 )



15 15 15 15 15 18
- _qn° T\ _ R0 _ano _an’
X,=0 X,= 10 X,=20 X,=40 x,=60 X,= 90
10 10 0 0 10 0
|
X, |
|

5| 54‘ G e st 5

o 1 U S .\‘u_qG‘-Al“;lJc i N .l.-Jg. NS
0.0 05 10 00 05 10 00 05 10 00 05 A 10 00 05 10 00 05 10

absU,
15 15 5 15 15 1§
_1nn° _ {1900 —14n° _qen° T 490
k=100 | x=120° | %=140 ) x=1%0 %=160" | x=170

10 10 10) 10# 1o 10

X3

5 § 5 § § §

f
cA..lx.AJ_lc.‘.\-.._A_lc A‘\ALA_‘_IO " Ll — | BT A N DR
00 05 10 00 05 10 00 05 10 00 05 A 10 00 05 10 00 05 10
absU,

Fig. 4.56 Case 5: The distribution of streamwise velocity perturbation profiles along
the azimuthal direction. (frequency f = 84.8 kHz ,w = (0.05039, 0.00164) , o = 0.08,
z; = 0.3505m and Re = 531)
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Fig. 4.57 Case 5: The distribution of temperature perturbation profiles along the
azimuthal direction. (frequency f = 84.8 kHz , w = (0.05039, 0.00164) ., o = 0.08.
xy = 0.3505m and Re = 531)
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Fig. 4.58 Case 6: The distribution of eigenfunction and Fourier components for a

symmetric mode with frequency f = 89.7 kHz. ( w = (0.0532, 0.0023) , « = 0.08 ,
1 = 0.033m and Re = 531)
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Fig. 4.59 Case 6 : The distribution of disturbance profiles along the azimuthal
direction. (frequency f = 89.7 kHz , w = (0.0532, 0.0023) and « = 0.08, z, = 0.033m
and Re = 531)
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Fig. 4.60 Case 7: The distribution of eigenfunction for a symmetric mode with
frequency f = 80.5 kHz. ( w = (0.04785, 0.00137) , @ = 0.08, z; = 0.033m and Re
= 531)
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Fig. 4.61 Case 7: The distribution of Fourier components of streamwise velocity
disturbance |u;s| with Fourier modes m at different heights. (frequency f = 80.5
kHz, w = (0.04785, 0.00137) , @« = 0.08 , ; = 0.033m and Re = 531 )
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Fig. 4.62 Case 1: The distribution of eigenfunction and Fourier components for a

symmetric mode with frequency f = 27.7 kHz . w = (0.0387,0.00427) , o = 0.07 ,
1 = 0.1978m and Re = 1350)



149

Louh o s0uN

-

0 50 100 150 180

b) Utreal

Fig. 4.63 Case 1. Contour plot of streamwise velocity disturbance. ( frequency
f=27.7kHz , w =(0.0589,0.00301) , a = 0.07 , z; =0.1978m and Re = 1350 )
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Fig. 4.64 Case 2: The distribution of eigenfunction for a symmetric mode with
frequency f = 42.2 kHz. (w = (0.0589 ,0.00301) , @ = 0.09, z; = 0.1978m and Re
= 1350)
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Fig. 4.65 Case 2: The distribution of Fourier components of streamwise velocity
disturbance |u;s| with Fourier modes m. (frequency f = 42.2 kHz , w = (0.0589,
.0.00301) , « = 0.09 , z; = 0.1978m and Re = 1350 )
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Fig. 4.66 Case 2: The distribution of streamwise velocity perturbation profiles along
the azimuthal direction. (frequency f = 42.2kHz ,w = (0.0589, 0.00301) , a = 0.09,
r; = 0.1978m and Re = 1350)
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Fig. 4.67 Case 2: The distribution of temperature perturbation profiles along the az-
imuthal direction. ( w = (0.0589, 0.00301) and « = 0.09, z1 = 0.1978m, Re = 1350)
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Fig. 4.68 Case 3: The distribution of eigenfunction for a symmetric mode with

frequency f = 41.05 kHz , w = (0.0572, 0.00343) , @ = 0.09 , z; = 0.1978m, and Re
—~ 1350)
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Fig. 4.69 Case 3: The distribution of Fourier components of streamwise velocity
disturbance |u;;| with Fourier modes m. (frequency f = 41.05 kHz , w = (0.0572,
0.00348) , @ = 0.09 , z; = 0.1978m and Re = 1350 )
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Fig. 4.70 Case 4: The distribution of eigenfunction and Fourier components for a

symmetric mode with frequency f =43.36 kHz , w = (0.06056, 0.00328) , c = 0.08
.z; = 0.1978m and Re = 1350)
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Fig. 4.71 Case 5: The distribution of eigenfunction and Fourier components for a

symmetric mode with frequency f = 40.35 kHz , w = (0.0563, 0.00131) . o = 0.09
1 =0.1978m and Re = 1350)
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Fig. 4.72 Case 6: The distribution of eigenfunction and Fourier components for a

symmetric mode with frequency f = 41.14 kHz. (w = (0.0574, 0.00115) . o = 0.09.
21 = 0.1978m and Re = 1350)
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Fig. 4.73 Case 6: Contour plot of streamwise velocity disturbance. (frequency
f = 41.14 kHz , w =(0.0574, 0.00115) , « =0.09 , z; = 0.1978m and Re =
1350 )
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Fig. 4.74 Case 6 : The distribution of disturbance profiles along the azimuthal
direction. (frequency f = 41.14 kHz , w = (0.0574, 0.00115) , @ = 0.09, z; = 0.1978m
and Re = 1350)
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b) The distribution of Fourier components of streamwise velocity
disturbance |u; | with Fourier modes m.
Fig. 4.75 Case 7: The distribution of eigenfunction and Fourier components for a

symmetric mode with frequency f = 39.16 kHz. (w = (0.0546, 0.00161) , o = 0.09.
z; = 0.1978m and Re = 1350)
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Fig. 4.76 Case 7: Contour plot of streamwise velocity disturbance. (frequency
f = 39.16 kHz , w = (0.0546, 0.00161) . @ =0.09 , 7y = 0.1978m and KRe =
1350 )
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Fig. 4.77 Case 1: The distribution of eigenfunction and Fourier components for a

symmetric mode with frequency f = 17.45 kHz , w = (0.0385, 0.00445) , o = 0.07,
z; = 0.5105m and Re = 2211)
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w = (0.0385, 0.00445) , « =0.07 , z; = 0.5105m and Re =
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b) The distribution of Fourier components of streamwise velocity
disturbance |uys| with Fourier modes m.
Fig. 4.79 Case 2: The distribution of eigenfunction and Fourier components for an

anti-symmetric mode with frequency f = 19.2kHz , w = (0.0423, 0.00351) , o = 0.07,
x1 = 0.5105m and Re = 2211)
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Fig. 4.80 Case 2: Contour plot of streamwise velocity disturbance. (frequency
f =192 kHz , w = (0.0423, 0.00351) , « =0.07 , z; = 0.5105m and Re =
2211 )
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Fig. 4.81 Case 3: The distribution of eigenfunction and Fourier components for
an anti-symmetric mode with frequency f = 19.04 kHz. (w = (0.0419, 0.00439) .
o = 0.07, z; = 0.5105m and Re = 2211)
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Fig. 4.82 Case 3: Contour plot of streamwise velocity disturbance |4;|. (frequency
f =19.04 kHz , w = (0.0419, 0.00439), o = 0.07 , z; = 0.5105m and Re = 2211 )
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Fig. 4.83 Case 4: The distribution of eigenfunction for an anti-symmetric mode with
frequency f = 23.03 kHz. (w = (0.0507, 0.00288) , o = 0.08, z; = 0.5105m and Re
= 2211)
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Fig. 4.84 Case 4: The distribution of Fourier components of streamwise velocity
disturbance |uj¢| with Fourier modes m. (frequency f = 23.03 kHz, « = (0.0507,
0.00288), o = 0.08, z; = 0.5105m and Re = 2211 )
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Fig. 4.85 Case 4: Contour plot of streamwise velocity disturbance |i|. (frequency

f =23.03 kHz, w = (0.0507, 0.00288), o = 0.08, z; = 0.5105m and Re = 2211 )



171

1.0 poir——————————— —————————r —
05 x,=0.672mm
A -
u1rea| L
0.0
-0.5
-1.0 N RS UR B S | NP | o
-180 -120 -60 (o} 60 120 180
x2
a) r3 = 0.48Tmm
1.0 —r——r e ————
0.5 - -
A |
u i ]
1real | x,=1.128mm ]
0.0 e~ Wﬁ—
-0.5 - -1
1.0 N U S S R N U EE U | N
-180 -120 -60 0 60 120 180
X2

b) r3 = 0.85mm

Fig. 4.86 Case 5: The distribution of eigenfunction for an anti-symmetric mode with
frequency f = 22.04 kHz. ( w = (0.0486, 0.00427) , & = 0.08 , 1 = 0.5105m and
Re = 2211)



0.030 ——————————T—

L x,=0.672mm
A
L i

i
3 RV

x,=1.128mm _

i L
0.020 + i

1
]
'
]
absU 1f

0.010

0.000 —— s - A
0 20 40 60 80 100

Fig. 4.87 Case 5: The distribution of Fourier components of streamwise velocity
disturbance |us| with Fourier modes m. (frequency f = 22.04 kHz, w =(0.0486,
0.00427), a = 0.08, z; = 0.5105m and Re = 2211 )

A
absU ]

0.5
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.07
0.03

0 s % i ]
o] 50 100 150 180
X,

Fig. 4.88 Case 5: Contour plot of streamwise velocity disturbance |4;]. ( frequency
f =22.04 kHz, w = (0.0436, 0.00427), o = 0.08, z; = 0.5105m and Re = 2211 )
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Fig. 4.89 Case 6: The distribution of eigenfunction and Fourier components for

an anti-symmetric mode with frequency f = 23.45 kHz. (w = (0.0517, 0.00411) ,
a = 0.08, r; = 0.5105m and Re = 2211)
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f=23.45 kHz , w = (0.0517, 0.00411), a = 0.08 , 71 = 0.5105m and Re = 2211 )



CHAPTER 5
CONCLUSIONS

A program is developed to investigate the linear stability of three-dimensional
compressible boundary layer flows over bodies of revolutions. The problem is for-
mulated as a 2-D eigenvalue problem incorporating the meanflow variations in the
normal and azimuthal directions. Thereby, the normal mode solutions are sought in
the whole plane perpendicular to the axial direction rather than in a line normal to
the wall as is done in the classical theory. The case of a supersonic flow over a sharp
cone with 5° half-included angle at 2° angle of attack was considered. The stability
computations were done using 1D and 2D eigenvalue methods. In the case of 2D
eigenvalue computations Implicitly Restarted Arnoldi Method was used to perform
global eigenvalue search and those values were used as guess values for the local 2D
eigenvalue computations.

In the first chapter the fundamentals of the linear stability was reviewed.
The nature of the instability in compressible and incompressible two- dimensional
and three-dimensional boundary layers and the formulations of the stability problems
as temporal and spatial problems were explained. Also the general historical review
of the research on the stability were mentioned.

Starting from the mathematical formulation of the stability problem of
the three-dimensional compressible boundary layer in generalized curvilinear coordi-
nate system, the numerical method and solution procedures for the case of a three-
dimensional boundary layer over a sharp cone at an angle of attack were discussed in
chapter2. The problem was formulated as 1D and 2D eigenvalue problem. In chapter
3, the results of meanflow computation over a sharp cone with 5° half-included angle

at 2° angle of attack obtained using TLNS3D were presented.
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In chapter 4 , the results of linear stability computations for the three-
dimensional compressible boundary layer over a sharp cone at an angle of attack as
LD and 2D eigenvalue method were presented. The stability computations were done
at four different stations along the streamwise direction. In 1D eigenvalue problem
the stability computations were performed as in classical theory - neglecting the
variation of the meanflow in azimuthal and streamwise direction. The 1D stability
results showed that the boundary layer region up to z;= 0.03m is stable and most
amplified temporal amplification rate occur around ry, = 90°. Also the effect of cross-
flow component was noticed to be in the middle region in the azimuthal direction and
it manifested itself as increase in the temporal amplification rate around z; = 90° for
negative mode numbers m and decrease in the temporal amplification rate for positive
mode numbers. Unlike the 1D stability results, where the eigenvalue spectrum for a
given azimuthal mode number m consisted only a few sparse unstable eigenvalues,
the 2D temporal eigenvalue method showed that in the 2D eigenvalue spectrum the
unstable eigenvalues were clustered in the complexw plane. Further, the distributions
of eigenfunctions along the azimuthal direction were found to clustered in confined
regions and were approximately symmetric about z3 = 90°. Due to the huge memory
requirement it is not possible to increase the number of points and the number of

modes.

5.1 Recommendations for the future work

The major barriers in the stability computations as 2D eigenvalue method are re-
quired memory and the CPU time. These limitations on the computational resources
make the number of Fourier modes and the grid points in the wall normal directions
kept to a range. Also, as explained earlier the spatial stability computations need

much more memory resources than that of temporal eigenvalue computations.

Thus, the recommendations for the future research are as follows;



e The stability computations of the three-dimensional compressible boundary layers

as spatial eigenvalue problem.
e Studying of evolution of each stability mode using PSE methods.

o Computation of N-factor and prediction of transition.

8

e Introducing a controlled disturbance , such as a point source of the form e'™? and

studying the evolution of it.



173

1.0 e ————— T

05 ]

x,=0.496mm

1real | \
0.0

c>

-0.5 — -

1.0 L PR R i " o PSR R R N
-180 -120 -60 0] 60 120 180
X2

a) The distribution velocity disturbance i1 eal in the azimuthal direction at

wall-normal point zz = 0.931lmm, where it has maximum amplitude

———————— T T 71
0.030 |-
x,=0.496mm
0.020 |-
absU
0.010 -
0.000 - e " : ,
(o] 20 40 60 80 100
m

b) The distribution of Fourier components of streamwise velocity
disturbance |u;| with Fourier modes m.
Fig. 4.89 Case 6: The distribution of eigenfunction and Fourier components for

an anti-symmetric mode with frequency f = 23.45 kHz. (w = (0.0517, 0.00411) .
o = 0.08. z; = 0.5105m and Re = 2211)



174

0.05
0.03

0 50 100 150 180
X,

Fig. 4.90 Case 3: Contour plot of streamwise velocity disturbance |4;|. (frequency
f=23.45 kHz , w = (0.0517, 0.00411), « = 0.08 , z; = 0.5105m and Re = 2211)



CHAPTER 5
CONCLUSIONS

A program is developed to investigate the linear stability of three-dimensional
compressible boundary layer flows over bodies of revolutions. The problem is for-
mulated as a 2-D eigenvalue problem incorporating the meanflow variations in the
normal and azimuthal directions. Thereby, the normal mode solutions are sought in
the whole plane perpendicular to the axial direction rather than in a line normal to
the wall as is done in the classical theory. The case of a supersonic flow over a sharp
cone with 5° half-included angle at 2° angle of attack was considered. The stability
computations were done using 1D and 2D eigenvalue methods. In the case of 2D
eigenvalue computations Implicitly Restarted Arnoldi Method was used to perform
global eigenvalue search and those values were used as guess values for the local 2D

eigenvalue computations.

In the first chapter the fundamentals of the linear stability was reviewed.
The nature of the instability in compressible and incompressible two- dimensional
and three-dimensional boundary layers and the formulations of the stability problems
as temporal and spatial problems were explained. Also the general historical review
of the research on the stability were mentioned.

Starting from the mathematical formulation of the stability problem of
the three-dimensional compressible boundary layer in generalized curvilinear coordi-
nate system, the numerical method and solution procedures for the case of a three-
dimensional boundary layer over a sharp cone at an angle of attack were discussed in
chapter2. The problem was formulated as 1D and 2D eigenvalue problem. In chapter
3. the results of meanflow computation over a sharp cone with 5° half-included angle

at 2° angle of attack obtained using TLNS3D were presented.
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In chapter 4 , the results of linear stability computations for the three-
dimensional compressible boundary layer over a sharp cone at an angle of attack as
1D and 2D eigenvalue method were presented. The stability computations were done
at four different stations along the streamwise direction. In LD eigenvalue problem
the stability computations were performed as in classical theory - neglecting the
variation of the meanflow in azimuthal and streamwise direction. The 1D stability
results showed that the boundary layer region up to == 0.03m is stable and most
amplified temporal amplification rate occur around z; = 90°. Also the effect of cross-
flow component was noticed to be in the middle region in the azimuthal direction and
it manifested itself as increase in the temporal amplification rate around z; = 90° for
negative mode numbers m and decrease in the temporal amplification rate for positive
mode numbers. Unlike the 1D stability results, where the eigenvalue spectrum for a
given azimuthal mode number m consisted only a few sparse unstable eigenvalues,
the 2D temporal eigenvalue method showed that in the 2D eigenvalue spectrum the
unstable eigenvalues were clustered in the complex w plane. Further, the distributions
of eigenfunctions along the azimutha) direction were found to clustered in confined
regions and were approximately symmetric about z, = 90°. Due to the huge memory
requirement it is not possible to ‘ncrease the number of points and the number of

modes.

5.1 Recommendations for the future work

The major barriers in the stability computations as 2D eigenvalue method are re-
quired memory and the CPU time. These limitations on the computational resources
make the number of Fourier modes and the grid points in the wall normal directions
kept to a range. Also, as explained earlier the spatial stability computations need

much more memory resources than that of temporal eigenvalue computations.

Thus. the recommendations for the future research are as follows;
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e The stability computations of the three-dimensional compressible boundary layers

as spatial eigenvalue problem.

e Studying of evolution of each stability mode using PSE methods.

e Computation of N-factor and prediction of transition.

ml

o Introducing a controlled disturbance , such as a point source of the form ¢ and

studying the evolution of it.
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